Moray eels (Muraenidae) are apex predators on coral reefs around the world, but they are not well studied because their cryptic habitats and occasionally aggressive behaviors make them difficult to collect. We provide a molecular phylogeny of moray eels including 44 species representing two subfamilies, eight genera, and all tropical ocean basins. Phylogenetic relationships among these taxa are estimated from portions of mitochondrial loci cytochrome b (632 bp) and cytochrome oxidase subunit 1 (596 bp), and portions of the nuclear loci RAG-1 (421 bp) and RAG-2 (754 bp).
View Article and Find Full Text PDFReef fishes disperse primarily as oceanic "pelagic" larvae, and debate continues over the extent of this dispersal, with recent evidence for geographically restricted (closed) populations in some species. In contrast, moray eels have the longest pelagic larval stages among reef fishes, possibly providing opportunities to disperse over great distances. We test this prediction by measuring mitochondrial DNA (mtDNA) and nuclear DNA variation in 2 species of moray eels, Gymnothorax undulatus (N = 165) and G.
View Article and Find Full Text PDFWe examine the effects of ecological opportunity and geographic area on rates of species accumulation and morphological evolution following archipelago colonization in day geckos (genus Phelsuma) in the Indian Ocean. Using a newly generated molecular phylogeny for the genus, we present evidence that these geckos likely originated on Madagascar, whereas colonization of three archipelagos in the Indian Ocean, the Seychelles, Mascarene, and Comoros Islands has produced three independent monophyletic radiations. We find that rates of species accumulation are not elevated following colonization but are roughly equivalent on all three isolated archipelagos and on the larger island of Madagascar.
View Article and Find Full Text PDFMol Phylogenet Evol
October 2008
A previous phylogeographic study of mitochondrial haplotypes for the Hispaniolan lizard Ameiva chrysolaema revealed deep genetic structure associated with seawater inundation during the late Pliocene/early Pleistocene and evidence of subsequent population expansion into formerly inundated areas. We revisit hypotheses generated by our previous study using increased geographic sampling of populations and analysis of three nuclear markers (alpha-enolase intron 8, alpha-cardiac-actin intron 4, and beta-actin intron 3) in addition to mitochondrial haplotypes (ND2). Large genetic discontinuities correspond spatially and temporally with historical barriers to gene flow (sea inundations).
View Article and Find Full Text PDFMolecular genetic analyses show that introduced populations undergoing biological invasions often bring together individuals from genetically disparate native-range source populations, which can elevate genotypic variation if these individuals interbreed. Differential admixture among multiple native-range sources explains mitochondrial haplotypic diversity within and differentiation among invasive populations of the lizard Anolis sagrei. Our examination of microsatellite variation supports the hypothesis that lizards from disparate native-range sources, identified using mtDNA haplotypes, form genetically admixed introduced populations.
View Article and Find Full Text PDFInvasive species are classically thought to suffer from reduced within-population genetic variation compared to their native-range sources due to founder effects and population bottlenecks during introduction. Reduction in genetic variation in introduced species may limit population growth, increase the risk of extinction, and constrain adaptation, hindering the successful establishment and spread of an alien species. Results of recent empirical studies, however, show higher than expected genetic variation, rapid evolution, and multiple native-range sources in introduced populations, which challenge the classical scenario of invasive-species genetics.
View Article and Find Full Text PDFThe biological invasion of the lizard Anolis sagrei provides an opportunity to study evolutionary mechanisms that produce morphological differentiation among non-native populations. Because the A. sagrei invasion represents multiple native-range source populations, differential admixture as well as random genetic drift and natural selection, could shape morphological evolution during the invasion.
View Article and Find Full Text PDFDarwin first recognized the importance of episodic intercontinental dispersal in the establishment of worldwide biotic diversity. Faunal exchange across the Bering Land Bridge is a major example of such dispersal. Here, we demonstrate with mitochondrial DNA evidence that three independent dispersal events from Asia to North America are the source for almost all lizard taxa found in continental eastern North America.
View Article and Find Full Text PDFWe examine phylogenetic relationships among salamanders of the family Salamandridae using approximately 2700 bases of new mtDNA sequence data (the tRNALeu, ND1, tRNAIle, tRNAGln, tRNAMet, ND2, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, and COI genes and the origin for light-strand replication) collected from 96 individuals representing 61 of the 66 recognized salamandrid species and outgroups. Phylogenetic analyses using maximum parsimony and Bayesian analysis are performed on the new data alone and combined with previously reported sequences from other parts of the mitochondrial genome. The basal phylogenetic split is a polytomy of lineages ancestral to (1) the Italian newt Salamandrina terdigitata, (2) a strongly supported clade comprising the "true" salamanders (genera Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), and (3) a strongly supported clade comprising all newts except S.
View Article and Find Full Text PDFAdaptive radiations have served as model systems for quantifying the build-up of species richness. Few studies have quantified the tempo of diversification in species-rich clades that contain negligible adaptive disparity, making the macroevolutionary consequences of different modes of evolutionary radiation difficult to assess. We use mitochondrial-DNA sequence data and recently developed phylogenetic methodologies to explore the tempo of diversification of eastern North American Plethodon, a species-rich clade of woodland salamanders exhibiting only limited phenotypic disparity.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
September 2006
Anoles of the Anolis onca series represent a dramatic case of retrograde evolution, exhibiting great reduction (A. annectens) and loss (A. onca) of the subdigital pads considered a key innovation for the evolutionary radiation of anoles in arboreal environments.
View Article and Find Full Text PDFBackground: Codon usage has direct utility in molecular characterization of species and is also a arker for molecular evolution. To understand codon usage within the diverse phylum Nematoda,we analyzed a total of 265,494 expressed sequence tags (ESTs) from 30 nematode species. The full genomes of Caenorhabditis elegans and C.
View Article and Find Full Text PDFContemporary North American drainage basins are composites of formerly isolated drainages, suggesting that fragmentation and fusion of palaeodrainage systems may have been an important factor generating current patterns of genetic and species diversity in stream-associated organisms. Here, we combine traditional molecular-phylogenetic, multiple-regression, nested clade, and molecular-demographic analyses to investigate the relationship between phylogeographic variation and the hydrogeological history of eastern North American drainage basins in semiaquatic plethodontid salamanders of the Eurycea bislineata species complex. Four hundred forty-two sequences representing 1108 aligned bases from the mitochondrial genome are reported for the five formally recognized species of the E.
View Article and Find Full Text PDFAn important dimension of adaptive radiation is the degree to which diversification rates fluctuate or remain constant through time. Focusing on plethodontid salamanders of the genus Desmognathus, we present a novel synthetic analysis of phylogeographic history, rates of ecomorphological evolution and species accumulation, and community assembly in an adaptive radiation. Dusky salamanders are highly variable in life history, body size, and ecology, with many endemic lineages in the southern Appalachian Highlands of eastern North America.
View Article and Find Full Text PDFPhylogenetic relationships among salamander families illustrate analytical challenges inherent to inferring phylogenies in which terminal branches are temporally very long relative to internal branches. We present new mitochondrial DNA sequences, approximately 2,100 base pairs from the genes encoding ND1, ND2, COI, and the intervening tRNA genes for 34 species representing all 10 salamander families, to examine these relationships. Parsimony analysis of these mtDNA sequences supports monophyly of all families except Proteidae, but yields a tree largely unresolved with respect to interfamilial relationships and the phylogenetic positions of the proteid genera Necturus and Proteus.
View Article and Find Full Text PDFOverwater dispersal and subsequent allopatric speciation contribute importantly to the species diversity of West Indian Anolis lizards and many other island radiations. Here we use molecular phylogenetic analyses to assess the contribution of overwater dispersal to diversification of the Anolis carolinensis subgroup, a clade comprising nine canopy-dwelling species distributed across the northern Caribbean. Although this clade includes some of the most successful dispersers and colonists in the anole radiation, the taxonomic status and origin of many endemic populations have been ambiguous.
View Article and Find Full Text PDFSquamate reptiles (snakes, lizards, and amphisbaenians) serve as model systems for evolutionary studies of a variety of morphological and behavioral traits, and phylogeny is crucial to many generalizations derived from such studies. Specifically, the traditional dichotomy between Iguania (anoles, iguanas, chameleons, etc.) and Scleroglossa (skinks, geckos, snakes, etc.
View Article and Find Full Text PDFSympatric speciation is often proposed to account for species-rich adaptive radiations within lakes or islands, where barriers to gene flow or dispersal may be lacking. However, allopatric speciation may also occur in such situations, especially when ranges are fragmented by fluctuating water levels. We test the hypothesis that Miocene fragmentation of Cuba into three palaeo-archipelagos accompanied species-level divergence in the adaptive radiation of West Indian Anolis lizards.
View Article and Find Full Text PDFA genetic paradox exists in invasion biology: how do introduced populations, whose genetic variation has probably been depleted by population bottlenecks, persist and adapt to new conditions? Lessons from conservation genetics show that reduced genetic variation due to genetic drift and founder effects limits the ability of a population to adapt, and small population size increases the risk of extinction. Nonetheless, many introduced species experiencing these same conditions during initial introductions persist, expand their ranges, evolve rapidly and become invasive. To address this issue, we studied the brown anole, a worldwide invasive lizard.
View Article and Find Full Text PDFAmeiva chrysolaema is distributed across the island of Hispaniola in the West Indies. The species is restricted to dry lowlands between major mountain ranges and along the southern and eastern coasts. Phylogenetic and phylogeographic analyses of mtDNA sequence variation from 14 sampling localities identify at least three independent evolutionary lineages, separated from one another by major mountain ranges.
View Article and Find Full Text PDFAnolis lizards in the Greater Antilles partition the structural microhabitats available at a given site into four to six distinct categories. Most microhabitat specialists, or ecomorphs, have evolved only once on each island, yet closely related species of the same ecomorph occur in different geographic macrohabitats across the island. The extent to which closely related species of the same ecomorph have diverged to adapt to different geographic macrohabitats is largely undocumented.
View Article and Find Full Text PDFIdentification of general properties of evolutionary radiations has been hindered by the lack of a general statistical and phylogenetic approach applicable across diverse taxa. We present a comparative analytical framework for examining phylogenetic patterns of diversification and morphological disparity with data from four iguanian-lizard taxa that exhibit substantially different patterns of evolution. Taxa whose diversification occurred disproportionately early in their evolutionary history partition more of their morphological disparity among, rather than within, subclades.
View Article and Find Full Text PDFNiche conservatism--the tendency for closely related species to be ecologically similar--is widespread. However, most studies compare closely related taxa that occur in allopatry; in sympatry, the stabilizing forces that promote niche conservatism, and thus inhibit niche shifts, may be countered by natural selection favouring ecological divergence to minimize the intensity of interspecific interactions. Consequently, the relative importance of niche conservatism versus niche divergence in determining community structure has received little attention.
View Article and Find Full Text PDFWallace's Line, separating the terrestrial faunas of South East Asia from the Australia-New Guinea region, is the most prominent and well-studied biogeographical division in the world. Phylogenetically distinct subgroups of major animal and plant groups have been documented on either side of Wallace's Line since it was first proposed in 1859. Despite its importance, the temporal history of fragmentation across this line is virtually unknown and the geological foundation has rarely been discussed.
View Article and Find Full Text PDF