Keratin IF (KRT) and keratin-associated protein genes encode the majority of wool and hair proteins. We have identified cDNA sequences representing nine novel sheep KRT genes, increasing the known active genes from eight to 17, a number comparable to that in the human. However, the absence of KRT37 in the type I family and the discovery of type II KRT87 in sheep exemplify species-specific compositional differences in hair KRT genes.
View Article and Find Full Text PDFThe catalogue of hair keratin intermediate filaments (KIFs) and keratin-associated proteins (KAPs) present in wool follicles is incomplete. The full coding sequences for three novel sheep KIFs (KRT27, KRT35 and KRT38) and one KAP (KRTAP4-3) were established in this study. Spatial expression patterns of these and other genes (KRT31, KRT85, KRTAP6-1 and trichohyalin) were determined by in situ hybridisation in wool follicles at synchronised stages of growth.
View Article and Find Full Text PDFHere, we provide the first study of prolactin (PRL) and prolactin receptor (PRLR) expression during the nonseasonal murine hair cycle, which is, in contrast to sheep, comparable with the human scalp and report that both PRL and PRLR are stringently restricted to the hair follicle epithelium and are strongly hair cycle-dependent. In addition we show that PRL exerts functional effects on anagen hair follicles in murine skin organ culture by down-regulation of proliferation in follicular keratinocytes. In telogen follicles, PRL-like immunoreactivity was detected in outer root sheath (ORS) keratinocytes.
View Article and Find Full Text PDF