Publications by authors named "Allan Collodel"

Bacterial meningitis is considered a life-threatening condition with high mortality rates. In response to the infection, signaling cascades, producing pro-inflammatory mediators trigger an exacerbated host immune response. Another inflammatory pathway occurs through the activation of inflammasomes.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is the most prevalent mood disorder globally. Most antidepressants available for the treatment of MDD increase the concentration of monoamines in the synaptic cleft. However, such drugs have a high latency time to obtain benefits.

View Article and Find Full Text PDF

Pneumococcal meningitis, inflammation of the meninges due to an infection of the Central Nervous System caused by Streptococcus pneumoniae (the pneumococcus), is the most common form of community-acquired bacterial meningitis globally. Aquaporin 4 (AQP4) water channels on astrocytic end feet regulate the solute transport of the glymphatic system, facilitating the exchange of compounds between the brain parenchyma and the cerebrospinal fluid (CSF), which is important for the clearance of waste away from the brain. Wistar rats, subjected to either pneumococcal meningitis or artificial CSF (sham control), received Evans blue-albumin (EBA) intracisternally.

View Article and Find Full Text PDF

Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19), which has been declared a public health emergency of international interest, with confirmed cases in most countries. COVID-19 presents manifestations that can range from asymptomatic or mild infections up to severe manifestations that lead to hospitalization and death. A growing amount of evidence indicates that the virus may cause neuroinvasion.

View Article and Find Full Text PDF

Sepsis is a life-threatening organ dysfunction triggered by a dysregulated host immune response attempting to eliminate the infection. After hospital discharge, half of the sepsis survivors recover, one-third of the patients die the following year, and one-sixth have a long-term cognitive impairment, including memory dysfunction, anxiety, depression, and post-traumatic stress disorder. The infection triggers the host immune response, and both can cause vascular endothelial damage, interrupting tight junctions proteins; consequently, the blood-brain barrier (BBB) breaks down, allowing and facilitating the entry of peripheral immune cells into the brain, which triggers or exacerbates the activation of glial cells and neuroinflammation.

View Article and Find Full Text PDF

The gut microbiota is a complex ecosystem that comprises of more than 100 trillion symbiotic microbial cells. The microbiota, the gut, and the brain form an association, 'the microbiota-gut-brain axis,' and synchronize the gut with the central nervous system and modify the behavior and brain immune homeostasis. The bidirectional communication between gut and brain occurs via the immune system, the vagus nerve, the enteric nervous system, and microbial metabolites, including short-chain fatty acids (SCFAs), proteins, and tryptophan metabolites.

View Article and Find Full Text PDF

Pneumococcal meningitis is a life-threatening infection of the central nervous system (CNS), and half of the survivors of meningitis suffer from neurological sequelae. We hypothesized that pneumococcal meningitis causes CNS inflammation via the disruption of the blood-brain barrier (BBB) and by increasing the receptor for advanced glycation end product (RAGE) expression in the brain, which causes glial cell activation, leading to cognitive impairment. To test our hypothesis, 60-day-old Wistar rats were subjected to meningitis by receiving an intracisternal injection of Streptococcus pneumoniae or artificial cerebrospinal fluid as a control group and were treated with a RAGE-specific inhibitor (FPS-ZM1) in saline.

View Article and Find Full Text PDF

Background: Bacterial meningitis is a devastating central nervous system (CNS) infection with acute and long-term neurological consequences, including cognitive impairment. The aim of this study was to understand the association between activated microglia-induced neuroinflammation and post-meningitis cognitive impairment.

Method: Meningitis was induced in male Wistar rats by injecting Streptococcus pneumoniae into the brain through the cisterna magna, and rats were then treated with ceftriaxone.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of lithium on brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) expression in the hippocampus and on memory in experimental pneumococcal meningitis. The mood-stabilizer lithium is known as a neuroprotective agent with many effects on the brain. In this study, animals received either artificial cerebrospinal fluid or suspension at a concentration of 5 × 10 CFU/mL.

View Article and Find Full Text PDF

Translocator protein (TSPO) is an 18kDa translocator membrane protein expressed in the outer mitochondrial membrane of steroid-synthesizing cells in the central and peripheral nervous systems. TSPO is involved in cellular functions, including the regulation of cell proliferation, transport of cholesterol to the inner mitochondrial membranes of glial cells, regulation of mitochondrial quality control, and haem synthesis. In the brain, TSPO has been extensively used as a biomarker of injury and inflammation.

View Article and Find Full Text PDF

Despite advances in antimicrobial therapy and advanced critical care neonatal bacterial meningitis has a mortality rate of over 10% and induces neurological sequelae in 20-50% of cases. Escherichia coli K1 (E. coli K1) is the most common gram-negative organism causing neonatal meningitis and is the second most common cause behind group B streptococcus.

View Article and Find Full Text PDF

The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells.

View Article and Find Full Text PDF

Pneumococcal meningitis is a severe infectious disease of the central nervous system (CNS) and a significant cause of morbidity and mortality worldwide. The inflammatory reaction to the disease contributes to neuronal injury and involves the meninges, the subarachnoid space and the brain parenchymal vessels. Bacterial pathogens may reach the blood-brain barrier and be recognized by antigen-presenting cells through the binding of Toll-like receptors, triggering an inflammatory cascade.

View Article and Find Full Text PDF

Streptococcus agalactiae (GBS) is a major cause of severe morbidity and mortality in neonates and young infants, causing sepsis, pneumonia and meningitis. The survivors from this meningitis can suffer serious long-term neurological consequences, such as, seizures, hearing loss, learning and memory impairments. Neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) control the neuronal cell death during the brain development and play an important role in neuronal differentiation, survival and growth of neurons.

View Article and Find Full Text PDF

Pneumococcal meningitis is a life-threatening disease characterized by an acute purulent infection affecting piamater, arachnoid and the subarachnoid space. The intense inflammatory host's response is potentially fatal and contributes to the neurological sequelae. Streptococcus pneumoniae colonizes the nasopharynx, followed by bacteremia, microbial invasion and blood-brain barrier traversal.

View Article and Find Full Text PDF

Pneumococcal meningitis is a life-threatening disease characterized by acute purulent infection of the meninges causing neuronal injury, cortical necrosis and hippocampal apoptosis. Cholinergic neurons and their projections are extensively distributed throughout the central nervous system. The aim of this study was to assess acetylcholinesterase activity in the rat brain after pneumococcal meningitis.

View Article and Find Full Text PDF