Background: Several studies on clinical practice for Duchenne muscular dystrophy (DMD) have been conducted in Western countries. However, there have been only a few similar studies in Asia and Oceania. Here, we investigate the steroid therapy-related clinical practice for DMD among the local experts.
View Article and Find Full Text PDFJ Gen Physiol
April 2017
Soon after the glass micropipette was invented as a micro-tool for manipulation of single bacteria and the microinjection and microsurgery of living cells, it was seen to hold promise as a microelectrode to stimulate individual cells electrically and to study electrical potentials in them. Initial successes and accurate mechanistic explanations of the results were achieved in giant plant cells in the 1920s. Long known surface electrical activity in nerves and muscles was only resolved at a similar cellular level in the 1930s and 1940s after the discovery of giant nerve fibers and the development of finer tipped microelectrodes for normal-sized cells.
View Article and Find Full Text PDFFunctionally, the dimeric human skeletal muscle chloride channel hClC-1 is characterized by two distinctive gating processes, fast (protopore) gating and slow (common) gating. Of these, common gating is poorly understood, but extensive conformational rearrangement is suspected. To examine this possibility, we used FRET (fluorescence resonance energy transfer) and assessed the effects of manipulating the common-gating process.
View Article and Find Full Text PDFProteins of the CLC family are comprised of two subunits, each with its own fast-gated protopore, both of these being regulated simultaneously by a slower common gate. Based on the X-ray crystal structure of a bacterial CLC, the carboxyl side chain of glutamate residue E232 has been proposed as the fast gate of hClC-1, swinging into each pore to close it and competing with chloride. We now show, using hClC-1 mutants expressed in whole-cell patch-clamped HEK293 cells, that elimination of this side chain in the E232Q mutation prevents fast gate closure at all voltages but common gating is also eliminated suggesting that E232 could be the final effector of both fast and common gating.
View Article and Find Full Text PDFInt J Biochem Cell Biol
June 2009
The membrane-resident domain of chloride channels and transporters of the CLC family is composed of 18 alpha-helices (designated A to R) connected sequentially by extracellular and intracellular loops, whose functional characteristics are generally unclear. To study the relevance of the intracellular loops linking helices D and E, F and G, H and I and J and K, alanine-exchange mutagenesis, split channel strategy, GST (glutathione transferase)-pull-down methods and whole-cell patch-clamp recordings were used. We investigated the possible roles of these loops in binding to the cytoplasmic, carboxyl tail (C-tail) of the protein, as well as their physiological roles in channel function.
View Article and Find Full Text PDFHuman ClC-1 (skeletal muscle Cl- channel) has a long cytoplasmic C-tail (carboxyl tail), containing two CBS (cystathionine beta-synthase) domains, which is very important for channel function. We have now investigated its significance further, using deletion and alanine-scanning mutagenesis, split channels, GST (glutathione transferase)-pull-down and whole-cell patch-clamping. In tagged split-channel experiments, we have demonstrated strong binding between an N-terminal membrane-resident fragment (terminating mid-C-tail at Ser(720) and containing CBS1) and its complement (containing CBS2).
View Article and Find Full Text PDFHuman muscular dystrophies are devastating and incurable inherited diseases. Hopes of progress towards therapy of muscular dystrophies were aroused when Sampaolesi et al. reported "extensive recovery of dystrophin expression, normal muscle.
View Article and Find Full Text PDFCrystal structures of bacterial CLC (voltage-gated chloride channel family) proteins suggest the arrangement of permeation pores and possible gates in the transmembrane region of eukaryotic CLC channels. For the extensive cytoplasmic tails of eukaryotic CLC family members, however, there are no equivalent structural predictions. Truncations of cytoplasmic tails in different places or point mutations result in loss of function or altered gating of several members of the CLC family, suggesting functional importance.
View Article and Find Full Text PDFTransition metals block the muscle Cl- channel ClC-1, which belongs to a large family of double-barreled Cl- channels and transporters. In the Torpedo Cl- channel ClC-0, Zn2+ block is closely related to the common gating mechanism that opens and closes both pores of the channel simultaneously, and the mutation C212S, which locks the common gate open, also eliminates the block. In ClC-1, however, previous results suggested that Zn2+ block is independent of gating, and that the cysteine residues involved in Zn2+ binding are in different positions to those that confer Zn2+ sensitivity on ClC-0.
View Article and Find Full Text PDFTwo novel mutations of the human CLCN1 chloride channel gene, c.592C>G (p.L198V) and c.
View Article and Find Full Text PDFClC-1 is a dimeric, double-pored chloride channel that is present in skeletal muscle. Mutations of this channel can result in the condition myotonia, a muscle disorder involving increased muscle stiffness. It has been shown that the dominant form of myotonia often results from mutations that affect the so-called slow, or common, gating process of the ClC-1 channel.
View Article and Find Full Text PDF