Publications by authors named "Allan B Okey"

The aryl hydrocarbon receptor (AHR) mediates many toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, the AHR alone does not explain the widely different outcomes among organisms. To identify the other factors involved, we evaluated three transgenic mouse lines, each expressing a different rat AHR isoform (rWT, DEL, and INS) providing widely different resistance to TCDD toxicity, as well as C57BL/6 and DBA/2 mice which exhibit a ~ tenfold divergence in TCDD sensitivity (exposures of 5-1000 μg/kg TCDD).

View Article and Find Full Text PDF

Background: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent congener of the dioxin class of environmental contaminants. Exposure to TCDD causes a wide range of toxic outcomes, ranging from chloracne to acute lethality. The severity of toxicity is highly dependent on the aryl hydrocarbon receptor (AHR).

View Article and Find Full Text PDF

2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) is an aromatic, long-lived environmental contaminant. While the pathogenesis of TCDD-induced toxicity is poorly understood, it has been shown that the aryl hydrocarbon receptor (AHR) is required. However, the specific transcriptomic changes that lead to toxic outcomes have not yet been identified.

View Article and Find Full Text PDF

Polychlorinated dibenzodioxins are environmental contaminants commonly produced as a by-product of industrial processes. The most potent of these, 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), is highly lipophilic, leading to bioaccumulation. White adipose tissue (WAT) is a major site for energy storage, and is one of the organs in which TCDD accumulates.

View Article and Find Full Text PDF

In some mammals, halogenated aromatic hydrocarbon (HAH) exposure causes wasting syndrome, defined as significant weight loss associated with lethal outcomes. The most potent HAH in causing wasting is 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), which exerts its toxic effects through the aryl hydrocarbon receptor (AHR). Since TCDD toxicity is thought to predominantly arise from dysregulation of AHR-transcribed genes, it was hypothesized that wasting syndrome is a result of to TCDD-induced dysregulation of genes involved in regulation of food-intake.

View Article and Find Full Text PDF

Background: Research on the aryl hydrocarbon receptor (AHR) has largely focused on variations in toxic outcomes resulting from its activation by halogenated aromatic hydrocarbons. But the AHR also plays key roles in regulating pathways critical for development, and after decades of research the mechanisms underlying physiological regulation by the AHR remain poorly characterized. Previous studies identified several core genes that respond to xenobiotic AHR ligands across a broad range of species and tissues.

View Article and Find Full Text PDF

Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues.

View Article and Find Full Text PDF

Profiling of mRNA abundances with high-throughput platforms such as microarrays and RNA-seq has become an important tool in both basic and biomedical research. However, these platforms remain prone to systematic errors and have challenges in clinical and industrial applications. As a result, it is standard practice to validate a subset of key results using alternate technologies.

View Article and Find Full Text PDF

The biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have been the subject of intense study for decades. It is now clear that essentially all TCDD-induced toxicities are mediated by DNA-protein interactions involving the Aryl Hydrocarbon Receptor (AHR). Nevertheless, it remains unknown which AHR target genes cause TCDD toxicities.

View Article and Find Full Text PDF

Rat is a major model organism in toxicogenomics and pharmacogenomics. Hepatic mRNA profiles after treatment with xenobiotic chemicals are used to predict and understand drug toxicity and mechanisms. Surprisingly, neither inter- and intra-strain variability of mRNA abundances in control rats nor the heritability of rat mRNA abundances yet been established.

View Article and Find Full Text PDF

The dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a wide range of toxic effects in rodent species, all of which are mediated by a ligand-dependent transcription-factor, the aryl hydrocarbon receptor (AHR). The Han/Wistar (Kuopio) (H/W) strain shows exceptional resistance to many TCDD-induced toxicities; the LD₅₀ of > 9600 μg/kg for H/W rats is higher than for any other wild-type mammal known. We previously showed that this resistance primarily results from H/W rats expressing a variant AHR isoform that has a substantial portion of the AHR transactivation domain deleted.

View Article and Find Full Text PDF

Flavin-containing monooxygenases often are thought not to be inducible but we recently demonstrated aryl hydrocarbon receptor (AHR)-dependent induction of FMO mRNAs in mouse liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Celius et al., Drug Metab Dispos 36:2499, 2008). We now evaluated FMO induction by other AHR ligands and xenobiotic chemicals in vivo and in mouse Hepa1c1c7 hepatoma cells (Hepa-1).

View Article and Find Full Text PDF

Background: The major toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) appear to result from dysregulation of mRNA levels mediated by the aryl hydrocarbon receptor (AHR). Dioxin-like chemicals alter expression of numerous genes in liver, but it remains unknown which lie in pathways leading to major toxicities such as hepatotoxicity, wasting and lethality. To identify genes involved in these responses we exploited a rat genetic model.

View Article and Find Full Text PDF

Colorectal cancer literature regarding the interaction between polymorphisms in carcinogen-metabolizing enzymes and red meat intake/doneness is inconsistent. A case-control study was conducted to evaluate the interaction between red meat consumption, doneness, and polymorphisms in carcinogen-metabolizing enzymes. Colorectal cancer cases diagnosed 1997 to 2000, ages 20 to 74 years, were identified through the population-based Ontario Cancer Registry and recruited by the Ontario Family Colorectal Cancer Registry.

View Article and Find Full Text PDF

Background: Mouse and rat models are mainstays in pharmacology, toxicology and drug development -- but differences between strains and between species complicate data interpretation and application to human health. Dioxin-like polyhalogenated aromatic hydrocarbons represent a major class of environmentally and economically relevant toxicants. In mammals dioxin exposure leads to a broad spectrum of adverse affects, including hepatotoxicity of varying severity.

View Article and Find Full Text PDF

Flavin-containing monooxygenases (FMOs) are important in detoxication but generally are considered not to be inducible by xenobiotics. Our recent microarray studies revealed induction of FMO2 and FMO3 mRNAs by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in liver of mice with wild-type aryl hydrocarbon receptor (AHR) but not in Ahr-null mice. The aim of the present study was to delineate mechanisms of FMO regulation.

View Article and Find Full Text PDF

Dioxins exert their major toxicologic effects by binding to the aryl hydrocarbon receptor (AHR) and altering gene transcription. Numerous dioxin-responsive genes previously were identified both by conventional biochemical and molecular techniques and by recent mRNA expression microarray studies. However, of the large set of dioxin-responsive genes the specific genes whose dysregulation leads to death remain unknown.

View Article and Find Full Text PDF

Acute progressive feed restriction (APFR) represents a specific form of caloric restriction in which feed availability is increasingly curtailed over a period of a few days to a few weeks. It is often used for control animals in toxicological and pharmacological studies on compounds causing body weight loss to equalize weight changes between experimental and control groups and thereby, intuitively, to also set their metabolic states to the same phase. However, scientific justification for this procedure is lacking.

View Article and Find Full Text PDF

Dioxin-like chemicals are well known for their ability to upregulate expression of numerous genes via the AH receptor (AHR). However, recent transcriptomic analyses in several laboratories indicate that dioxin-like chemicals or AHR genotype itself also can downregulate levels of mRNAs encoded by numerous genes. The mechanism responsible for such downregulation is unknown.

View Article and Find Full Text PDF

The AHR locus encodes the aryl hydrocarbon receptor (AHR), a transcriptional regulator of multiple drug-metabolizing enzymes and mediator of toxicity of dioxin-like chemicals. The Han/Wistar (Kuopio) rat strain (H/W) is remarkably resistant to lethal effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) because of a point mutation in the exon/intron 10 boundary in AHR genomic structure that leads to use of 3 alternative cryptic splice sites, potentially creating 3 alternative transcripts and 2 protein products. The deletion variant (DV), which lacks 43 amino acids in the transactivation domain, has the highest intrinsic transactivation activity in vitro; amino acids 766 to 783 suppress transactivation function.

View Article and Find Full Text PDF

The science of toxicology is devoted, in large part, to understanding mechanisms of toxicity so that we can more accurately assess the risk posed by exposure to xenobiotic agents and, perhaps, intervene in the toxicologic process to mitigate harm. Dioxin-like chemicals continue to be of great concern as environmental toxicants. About 30 years ago the aryl hydrocarbon receptor (AHR) was discovered as a specific binding site for 2,3,7,8-tetrachlorodibenzo-p-dioxin.

View Article and Find Full Text PDF

Abnormal development of the prefrontal cortex (PFC) is associated with a number of neuropsychiatric disorders that have an onset in childhood or adolescence. Although the basic laminar structure of the PFC is established in utero, extensive remodeling continues into adolescence. To map the overall pattern of changes in cortical gene transcripts during postnatal development, we made serial measurements of mRNA levels in mouse PFC using oligonucleotide microarrays.

View Article and Find Full Text PDF

Analytical techniques for the determination of polychorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF) and dioxin-like PCBs (DLPCB) are reviewed. The focus of the review is on recent advances in methodology and analytical procedures. The paper also reviews toxicology, the development of toxic equivalent factors (TEF) and the determination of toxic equivalent quantity (TEQ) values.

View Article and Find Full Text PDF

One characteristic feature of acute 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity is dramatic interspecies and interstrain variability in sensitivity. This complicates dioxin risk assessment for humans. However, this variability also provides a means of characterizing mechanisms of dioxin toxicity.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) participates in a wide range of critical cellular events in response to endogenous signals or xenobiotic chemicals. Hence, it is important that AHR levels and activity themselves be well controlled in target tissues. The AHR is essentially ubiquitous in its distribution in mammalian tissues.

View Article and Find Full Text PDF