Inflammatory neuropathies represent disabling human autoimmune disorders with considerable disease variability. Animal models provide insights into defined aspects of their disease pathogenesis. Forkhead box P3 (FoxP3)+ regulatory T lymphocytes (Treg) are anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders.
View Article and Find Full Text PDFIFNβ is a common therapeutic option to treat multiple sclerosis. It is unique among the family of type I IFNs in that it binds to the interferon receptors with high affinity, conferring exceptional biological properties. We have previously reported the generation of an interferon superagonist (dubbed YNSα8) that is built on the backbone of a low affinity IFNα but modified to exhibit higher receptor affinity than even for IFNβ.
View Article and Find Full Text PDFWe have generated transgenic mice that harbor humanized type I interferon receptors (IFNARs) enabling the study of type I human interferons (Hu-IFN-Is) in mice. These "HyBNAR" (Hybrid IFNAR) mice encode transgenic variants of IFNAR1 and IFNAR2 with the human extracellular domains being fused to transmembrane and cytoplasmic segments of mouse sequence. B16F1 mouse melanoma cells harboring the HyBNAR construct specifically bound Hu-IFN-Is and were rendered sensitive to Hu-IFN-I stimulated anti-proliferation, STAT1 activation and activation of a prototypical IFN-I response gene (MX2).
View Article and Find Full Text PDFParasitic infections frequently lead to immune deviation or suppression. However, the application of specific parasitic molecules in regulating autoimmune responses remains to be explored. Here we report on the immune modulatory function of Lacto-N-fucopentaose III (LNFPIII), a schistosome glycan, in an animal model for multiple sclerosis.
View Article and Find Full Text PDFMigration of immune cells characterizes inflammation and plays a key role in autoimmune diseases such as MS. CD4(+)Foxp3(+) regulatory T cells (Treg) have the potential to dampen immune responses but show functional impairment in patients with MS. We here show that murine Treg exhibit higher constitutive cell motility in horizontal migration on laminin, surpass non-Treg in transwell assays through microporous membranes as well as across primary brain endothelium and are present in the naïve CNS to a significantly higher extent compared to spleen, lymph nodes and blood.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (pDCs) are instrumental in peripheral T cell tolerance and innate immunity. How pDCs control peripheral immunetolerance and local parenchymal immune response and contribute to the altered immunoregulation in autoimmune disorders in humans is poorly understood. Based on their surface markers, cytokine production, and ability to prime naive allogenic T cells, we found that purified BDCA-2(+)BDCA-4(+) pDCs consist of at least two separate populations, which differed in their response to oligodeoxynucleotides and IFNs (IFN-beta), and differently induced IL-17- or IL-10-producing T cells.
View Article and Find Full Text PDFDendritic cells (DCs) are crucial in the initiation of immune responses and are primary targets in vaccination. Here, we describe fluorescent, carbon magnetic nanoparticles (CMNPs) within the 20-80 nm size range that are non-toxic and preferentially endocytosed by DCs. These attributes allow for DC tracing in vitro, ex vivo and in vivo, by both fluorescence and MRI.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic immune-mediated, central nervous system (CNS) demyelinating disease. Clinical and histopathological features suggest an inflammatory etiology involving resident CNS innate cells as well as invading adaptive immune cells. Encephalitogenic myelin-reactive T cells have been implicated in the initiation of an inflammatory cascade, eventually resulting in demyelination and axonal damage (the histological hallmarks of MS).
View Article and Find Full Text PDFCell-type specific expression of the human diphtheria toxin receptor in generally toxin resistant mice represents an innovative approach for the selective depletion of pre-defined cell populations. We demonstrate that in wildtype mice diphtheria toxin--in concentrations otherwise well tolerated--is highly toxic and lethal together with active immunization irrespective of the immunogenic peptide applied. We found increased lung cellularity as only pathological abnormality.
View Article and Find Full Text PDFMycobacterium bovis BCG is still the most widely used vaccine against tuberculosis and CD8(+) T cells play important roles in fighting infection. We investigated how well antigen is processed and presented to CD8(+) T cells using the same well-characterized CD8(+) T cell epitope SIINFEKL expressed in either a cytoplasmic (GFP-OVA) or secreted (85B-OVA) context from BCG. We report that secreted SIINFEKL from 85B-OVA BCG is presented better than cytoplasmic SIINFEKL expressed by GFP-OVA BCG.
View Article and Find Full Text PDFObjective: We have recently described a novel population of natural regulatory T cells (T(reg)) that are characterized by the expression of HLA-G and may be found at sites of tissue inflammation (HLA-G(pos) T(reg)). Here we studied the role of these cells in multiple sclerosis (MS), a prototypic autoimmune inflammatory disorder of the central nervous system (CNS).
Methods: Sixty-four patients with different types of MS, 9 patients with other neurological diseases, and 20 healthy donors were included in this study.
DC in the CNS have emerged as the major rate-limiting factor for immune invasion and subsequent neuroinflammation during EAE. The mechanism of how this is regulated by brain-localized DC remains unknown. Here, we describe the ability of brain-localized DC expressing B7-H1 molecules to recruit CD8(+) T cells to the site of inflammation.
View Article and Find Full Text PDFCD4(+) T cells constitutively expressing the immune-tolerogenic HLA-G have been described recently as a new type of nT(reg) (HLA-G(pos) T(reg)) in humans. HLA-G(pos) T(reg) accumulate at sites of inflammation and are potent suppressors of T cell proliferation in vitro, suggesting their role in immune regulation. We here characterize the mechanism of how CD4(+) HLA-G(pos) T(reg) influence autologous HLA-G(neg) T(resp) function.
View Article and Find Full Text PDFDendritic cells (DCs) appear in higher numbers within the CNS as a consequence of inflammation associated with autoimmune disorders, such as multiple sclerosis, but the contribution of these cells to the outcome of disease is not yet clear. Here, we show that stimulatory or tolerogenic functional states of intracerebral DCs regulate the systemic activation of neuroantigen-specific T cells, the recruitment of these cells into the CNS and the onset and progression of experimental autoimmune encephalomyelitis (EAE). Intracerebral microinjection of stimulatory DCs exacerbated the onset and clinical course of EAE, accompanied with an early T-cell infiltration and a decreased proportion of regulatory FoxP3-expressing cells in the brain.
View Article and Find Full Text PDFMultiple sclerosis and an animal model resembling multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the CNS that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-gamma, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-gamma in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG).
View Article and Find Full Text PDFIn multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial "Excitatory Amino Acid Transporters" (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a beta-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in "Myelin Oligodendrocyte Glycoprotein" (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2008
The semaphorin and plexin family of ligand and receptor proteins provides important axon guidance cues required for development. Recent studies have expanded the role of semaphorins and plexins in the regulation of cardiac, circulatory and immune system function. Within the immune system, semaphorins and plexins regulate cell-cell interactions through a complex network of receptor and ligand pairs.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) of putative autoimmune origin. Recent evidence indicates that MS autoimmunity is linked to defects in regulatory T-cell function, which normally regulates immune responses to self-antigens and prevents autoimmune diseases. MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have long been regarded as a CD4(+) T-cell-mediated autoimmune disease.
View Article and Find Full Text PDFThe dysregulation of inflammatory responses and of immune self-tolerance is considered to be a key element in the autoreactive immune response in multiple sclerosis (MS). Regulatory T (T(REG)) cells have emerged as crucial players in the pathogenetic scenario of CNS autoimmune inflammation. Targeted deletion of T(REG) cells causes spontaneous autoimmune disease in mice, whereas augmentation of T(REG)-cell function can prevent the development of or alleviate variants of experimental autoimmune encephalomyelitis, the animal model of MS.
View Article and Find Full Text PDFThe co-inhibitory B7-homologue 1 (B7-H1/PD-L1) influences adaptive immune responses and has been proposed to contribute to the mechanisms maintaining peripheral tolerance and limiting inflammatory damage in parenchymal organs. To understand the B7-H1/PD1 pathway in CNS inflammation, we analyzed adaptive immune responses in myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced EAE and assessed the expression of B7-H1 in human CNS tissue. B7-H1(-/-) mice exhibited an accelerated disease onset and significantly exacerbated EAE severity, although absence of B7-H1 had no influence on MOG antibody production.
View Article and Find Full Text PDFThe extracellular matrix (ECM) connecting brain capillary endothelial cells (BCEC) with the surrounding brain resident cells is an essential part of the blood-brain barrier (BBB). Represented by the basement membrane which joins BCEC with brain neuroglia (astrocytes and pericytes) it forms a neurovascular unit. Neuroglia-secreted matrix metalloproteinases (MMPs) control the ECM composition and are involved in the integrity and function of the BBB during cell diapedesis and BBB breakdown after ischemia and other CNS diseases.
View Article and Find Full Text PDFThe homophilic cell adhesion molecule PECAM-1 is a major participant in the migration of leukocytes across endothelium. We examined the ability of a chimeric soluble PECAM-1 fused to human IgG-Fc to impair leukocyte entry through the blood-brain barrier and reduce CNS autoimmunity. sPECAM-Fc impaired migration of lymphocytes across brain endothelial monolayers and diminished the severity of EAE, an experimental model of MS, when administered at the onset of symptoms.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is composed of the cerebral microvascular endothelium, which, together with astrocytes, pericytes, and the extracellular matrix (ECM), contributes to a "neurovascular unit". It was our objective to clarify the impact of endogenous extracellular matrices on the barrier function of BBB microvascular endothelial cells cultured in vitro. The study was performed in two consecutive steps: (i) The ECM-donating cells (astrocytes, pericytes, endothelial cells) were grown to confluence and then removed from the growth substrate by a protocol that leaves the ECM behind.
View Article and Find Full Text PDFDendritic cells (DCs) accumulate in the CNS during inflammatory diseases, but the exact mechanism regulating their traffic into the CNS remains to be defined. We now report that MIP-1alpha increases the transmigration of bone marrow-derived, GFP-labeled DCs across brain microvessel endothelial cell monolayers. Furthermore, occludin, an important element of endothelial tight junctions, is reorganized when DCs migrate across brain capillary endothelial cell monolayers without causing significant changes in the barrier integrity as measured by transendothelial electrical resistance.
View Article and Find Full Text PDFHydrocortisone is known to induce barrier properties in porcine primary cultures of microvascular endothelial cells. Here we present similar effects of hydrocortisone on a serum-free in vitro model based on primary cultured mouse brain endothelial cells. These cells in culture express typical blood-brain barrier properties and the transendothelial electrical resistance is enhanced after the addition of hydrocortisone to the medium in physiological concentrations.
View Article and Find Full Text PDF