Publications by authors named "Alla Toropova"

The COVID-19 pandemic has prompted the medical systems of many countries to develop effective treatments to combat the high rate of infection and death caused by the disease. Within the array of proteins found in SARS-CoV-2, the 3 chymotrypsin-like protease (3CL) holds significance as it plays a crucial role in cleaving polyprotein peptides into distinct functional nonstructural proteins. Meanwhile, RNA-dependent RNA polymerase (RdRp) takes center stage as the key enzyme tasked with replicating the viral genomic RNA within host cells.

View Article and Find Full Text PDF

Typical in silico models for ecotoxicology focus on a few endpoints, but there is a need to increase the diversity of these models. This study proposes models using the NOEC for the harlequin fly () and EC50 for swollen duckweed () for the first time. The data were derived from the EFSA OpenFoodTox database.

View Article and Find Full Text PDF

Models of toxicity to tadpoles have been developed as single parameters based on special descriptors which are sums of correlation weights, molecular features, and experimental conditions. This information is presented by quasi-SMILES. Fragments of local symmetry (FLS) are involved in the development of the model and the use of FLS correlation weights improves their predictive potential.

View Article and Find Full Text PDF

Simulation of the physicochemical and biochemical behavior of nanomaterials has its own specifics. However, the main goal of modeling for both traditional substances and nanomaterials is the same. This is an ecologic risk assessment.

View Article and Find Full Text PDF

The OECD recognizes that data on a compound's ability to treat eye irritation are essential for the assessment of new compounds on the market. In silico models are frequently used to provide information when experimental data are lacking. Semi-correlations, as they are called, can be useful to build up categorical models for eye irritation.

View Article and Find Full Text PDF

Data on Henry's law constants make it possible to systematize geochemical conditions affecting atmosphere status and consequently triggering climate changes. The constants of Henry's law are desired for assessing the processes related to atmospheric contaminations caused by pollutants. The most important are those that are capable of long-term movements over long distances.

View Article and Find Full Text PDF

Most quantitative structure-property/activity relationships (QSPRs/QSARs) techniques involve using different programs separately for generating molecular descriptors and separately for building models based on available descriptors. Here, the capabilities of the CORAL program are evaluated. A user of the program should apply as the basis for models the representation of the molecular structure by means of the simplified molecular input-line entry system (SMILES) as well as experimental data on the endpoint of interest.

View Article and Find Full Text PDF

The assessment of cardiotoxicity is a persistent problem in medicinal chemistry. Quantitative structure-activity relationships (QSAR) are one possible way to build up models for cardiotoxicity. Here, we describe the results obtained with the Monte Carlo technique to develop hybrid optimal descriptors correlated with cardiotoxicity.

View Article and Find Full Text PDF

Fullerene derivatives (FDs) are widely used in nanomaterials production, the pharmaceutical industry and biomedicine. In the present study, we focused on the potential toxic effects of FDs on the aquatic environment. First, we analyzed the binding affinity of 169 FDs to 10 human proteins (1D6U, 1E3K, 1GOS, 1GS4, 1H82, 1OG5, 1UOM, 2F9Q, 2J0D, 3ERT) obtained from the Protein Data Bank (PDB) and showing high similarity to proteins from aquatic species.

View Article and Find Full Text PDF

The minimal inhibitory concentrations (pMIC) are a valuable measure of the biological activity of polypeptides. Numerical data on the pMIC are necessary to systematize knowledge on polypeptides' biochemical behaviour. The model of negative decimal logarithm of pMIC of polypeptides in the form of a mathematical function of a sequence of amino acids is suggested.

View Article and Find Full Text PDF

Context: To apply the quantitative relationships "structure-endpoint" approach, the reliability of prediction is necessary but sometimes challenging to achieve. In this work, an attempt is made to accomplish the reliability of forecasts by creating a set of random partitions of data into training and validation sets, followed by constructing random models. A system of random models for a helpful approach should be self-consistent, giving a similar or at least comparable statistical quality of the predictions for models obtained using different splits of available data into training and validation sets.

View Article and Find Full Text PDF

Algorithms of the simulation of the anticancer activity of nanoparticles under different experimental conditions toward cell lines A549 (lung cancer), THP-1 (leukemia), MCF-7 (breast cancer), Caco2 (cervical cancer), and hepG2 (hepatoma) have been developed using the quasi-SMILES approach. This approach is suggested as an efficient tool for the quantitative structure-property-activity relationships (QSPRs/QSARs) analysis of the above nanoparticles. The studied model is built up using the so-called vector of ideality of correlation.

View Article and Find Full Text PDF

Mutagenicity is one of the most dangerous properties from the point of view of medicine and ecology. Experimental determination of mutagenicity remains a costly process, which makes it attractive to identify new hazardous compounds based on available experimental data through in silico methods or quantitative structure-activity relationships (QSAR). A system for constructing groups of random models is proposed for comparing various molecular features extracted from SMILES and graphs.

View Article and Find Full Text PDF

Removing a drug-like substance that can cause drug-induced liver injury from the drug discovery process is a significant task for medicinal chemistry. In silico models can facilitate this process. Semi-correlation is an approach to building in silico models representing the prediction in the active (1)-inactive (0) format.

View Article and Find Full Text PDF

Background: The widespread use of new engineered nanomaterials (ENMs) in industries such as cosmetics, electronics, and diagnostic nanodevices, has been revolutionizing our society. However, emerging studies suggest that ENMs present potentially toxic effects on the human lung. In this regard, we developed a machine learning (ML) nano-quantitative-structure-toxicity relationship (QSTR) model to predict the potential human lung nano-cytotoxicity induced by exposure to ENMs based on metal oxide nanoparticles.

View Article and Find Full Text PDF

The traditional application for quantitative structure-property/activity relationships (QSPRs/QSARs) in the fields of thermodynamics, toxicology or drug design is predicting the impact of molecular features using data on the measurable characteristics of substances. However, it is often necessary to evaluate the influence of various exposure conditions and environmental factors, besides the molecular structure. Different enzyme-driven processes lead to the accumulation of metal ions by the worms.

View Article and Find Full Text PDF

Drug-induced nephrotoxicity is a major cause of kidney dysfunction with potentially fatal consequences. The poor prediction of clinical responses based on preclinical research hampers the development of new pharmaceuticals. This emphasises the need for new methods for earlier and more accurate diagnosis to avoid drug-induced kidney injuries.

View Article and Find Full Text PDF

One of the most well-known anti-targets defining medication cardiotoxicity is the voltage-dependent hERG K + channel, which is well-known for its crucial involvement in cardiac action potential repolarization. Torsades de Pointes, QT prolongation, and sudden death are all caused by hERG (the human Ether-à-go-go-Related Gene) inhibition. There is great interest in creating predictive computational () tools to identify and weed out potential hERG blockers early in the drug discovery process because testing for hERG liability and the traditional experimental screening are complicated, expensive and time-consuming.

View Article and Find Full Text PDF

Quantitative structure-property/activity relationships (QSPRs/QSARs) are a tool of modern theoretical and computational chemistry. The self-consistent model system is both a method to build up a group of QSPR/QSAR models and an approach to checking the reliability of these models. Here, a group of models of pesticide toxicity toward for different distributions into training and test sub-sets is compared.

View Article and Find Full Text PDF

A simulation of the effect of metal nano-oxides at various concentrations (25, 50, 100, and 200 milligrams per millilitre) on cell viability in THP-1 cells (%) based on data on the molecular structure of the oxide and its concentration is proposed. We used a simplified molecular input-line entry system (SMILES) to represent the molecular structure. So-called quasi-SMILES extends usual SMILES with special codes for experimental conditions (concentration).

View Article and Find Full Text PDF

The different features of the impact of nanoparticles on cells, such as the structure of the core, presence/absence of doping, quality of surface, diameter, and dose, were used to define quasi-SMILES, a line of symbols encoded the above physicochemical features of the impact of nanoparticles. The correlation weight for each code in the quasi-SMILES has been calculated by the Monte Carlo method. The descriptor, which is the sum of the correlation weights, is the basis for a one-variable model of the biological activity of nano-inhibitors of human lung carcinoma cell line A549.

View Article and Find Full Text PDF

Quasi-SMILES is an extension of the traditional SMILES. The classic SMILES is a way to represent the molecular structure. The quasi-SMILES is a way to describe all eclectic conditions that are able to affect the activity of a substance or a mixture.

View Article and Find Full Text PDF

Simplified molecular input-line entry system (SMILES) is a format for representing of the molecular structure. Quasi-SMILES is an extended format for representing molecular structure data and some eclectic data, which in principle could be applied to improve a model's predictive potential. Nano-quantitative structure-property relationships (nano-QSPRs) for energy gap (, eV) of the metals oxide nanoparticles based on the quasi-SMILES give a predictive model for , characterized by the following statistical quality for external validation set n = 22, R= 0.

View Article and Find Full Text PDF

The risk-characterization of chemicals requires the determination of repeated-dose toxicity (RDT). This depends on two main outcomes: the no-observed-adverse-effect level (NOAEL) and the lowest-observed-adverse-effect level (LOAEL). These endpoints are fundamental requirements in several regulatory frameworks, such as the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) and the European Regulation of 1223/2009 on cosmetics.

View Article and Find Full Text PDF

Quasi-SMILES deviate from traditional SMILES (simplified molecular input-line entry system) by the extension of additional symbols that encode for conditions of an experiment. Descriptors calculated with SMILES are useful for the development of quantitative structure-property/activity relationships (QSPRs/QSARs), while descriptors calculated with quasi-SMILES can be useful for the development of quantitative models of experimental results obtained under different conditions. Here, this approach has been applied for the development of generalized models using aquatic nanotoxicity data (i.

View Article and Find Full Text PDF