Publications by authors named "Alla L Ivanova"

: West Nile virus (WNV) is a rapidly growing problem worldwide. The lack of emergency treatment and a safe licensed vaccine against WNV allows the virus to cause sporadic outbreaks of human disease, including fatal cases. Formalin-inactivated vaccines have been used for a long time and have been shown to be very safe and effective, especially in susceptible populations.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV) causes a severe disease, tick-borne encephalitis (TBE), that has a substantial epidemiological importance for Northern Eurasia. Between 10,000 and 15,000 TBE cases are registered annually despite the availability of effective formaldehyde-inactivated full-virion vaccines due to insufficient vaccination coverage, as well as sporadic cases of vaccine breakthrough. The development of improved vaccines would benefit from the atomic resolution structure of the antigen.

View Article and Find Full Text PDF

X-ray imaging of virus particles at the European XFEL could eventually allow their complete structures to be solved, potentially approaching the resolution of other structural virology methods. To achieve this ambitious goal with today's technologies, about 1 ml of purified virus suspension containing at least 10 particles per millilitre is required. Such large amounts of concentrated suspension have never before been obtained for enveloped viruses.

View Article and Find Full Text PDF

The main approach to preventing tick-borne encephalitis (TBE) is vaccination. Formaldehyde-inactivated TBE vaccines have a proven record of safety and efficiency but have never been characterized structurally with atomic resolution. We report a cryoelectron microscopy (cryo-EM) structure of the formaldehyde-inactivated TBE virus (TBEV) of Sofjin-Chumakov strain representing the Far-Eastern subtype.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV) is an enveloped RNA virus, a member of the genus (family ). Here, we provide a detailed analysis of the size and structure of the inactivated TBEV vaccine strain Sofjin-Chumakov. Four analytical methods were used to analyze individual TBEV particles-negative staining TEM, cryo-EM, atomic force microscopy (AFM), and nanoparticle tracking analysis (NTA).

View Article and Find Full Text PDF