We study the influence of core-shell morphology on the structural characteristics of nanogels. Using computer simulations, we examine three different types of systems, distinguished by their intermonomer interactions: those with excluded volume only; those with charged monomers and excluded volume; and those with excluded volume combined with a certain number of magnetised nanoparticles incorporated within the nanogel. We observe that if the polymers in the shell are short and dense, they tend to penetrate the core.
View Article and Find Full Text PDFIn this work we employ molecular dynamics simulations to investigate the first-order-reversal-curve distribution and switching-field distribution of magnetic elastomers. We model magnetic elastomers in a bead-spring approximation with permanently magnetized spherical particles of two different sizes. We find that a different fractional composition of particles affects the magnetic properties of elastomers obtained as a result.
View Article and Find Full Text PDFUsing the combination of experiment and molecular dynamics simulations, we investigate structural transformations in magnetic elastomers with NdFeB flake-like particles, caused by applied moderate magnetic fields. We explain why and how those transformations depend on whether or not the samples are initially cured by a short-time exposure to a strong field. We find that in a cured sample, a moderate magnetic field leads mainly to in-place flake rotations that are fully reversed once the applied field is switched off.
View Article and Find Full Text PDFIn the present paper, we study the self-diffusion of aggregating magnetic particles in bidisperse ferrofluids. We employ density functional theory (DFT) and coarse-grained molecular dynamics (MD) simulations to investigate the impact of granulometric composition of the system on the cluster self-diffusion. We find that the presence of small particles leads to the overall increase of the self-diffusion rate of clusters due the change in cluster size and composition.
View Article and Find Full Text PDFBeing able to predict and understand the behaviour of soft magnetic materials paves the way to their technological applications. In this study we analyse the magnetic response of soft magnetic elastomers (SMEs) with magnetically hard particles. We present experimental evidence of a difference between the first and next magnetisation loops exhibited by these SMEs, which depends non-monotonically on the interplay between the rigidity of the polymer matrix, its mechanical coupling with the particles, and the magnetic interactions in the system.
View Article and Find Full Text PDF