Biofouling is a hurdle of seawater desalination that increases water costs and energy consumption. In membrane distillation (MD), biofouling development is complicated due to the temperature effect that adversely affects microbial growth. Given the high relevance of MD to regions with abundant warm seawater, it is essential to explore the biofouling propensity of microbial communities with higher tolerance to elevated temperature conditions.
View Article and Find Full Text PDFMembrane distillation (MD) has the high potential to circumvent conventional desalination limitations in treating highly saline brines. However, the performance of MD is limited by its low thermal efficiencyand temperature polarization (TP) effect. Consequently, the driving force decreases when heat loss increases.
View Article and Find Full Text PDFAir Gap Membrane distillation (AGMD) is a thermally driven separation process capable of treating challenging water types, but its low productivity is a major drawback. Membrane fouling is a common problem in many membrane treatment systems, which exacerbates AGMD's low overall productivity. In this study, we investigated the direct application of low-power ultrasound (8-23 W), as an in-line cleaning and performance boosting technique for AGMD.
View Article and Find Full Text PDFThis study investigated the application of polyaluminum chloride (PACl) for the treatment of the oil sands process-affected water (OSPW). These coagulants are commonly used in water treatment with the most effective species reported to be Al13. PACl with 83.
View Article and Find Full Text PDFThe interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.
View Article and Find Full Text PDFThe oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW.
View Article and Find Full Text PDFLarge volumes of oil sands process-affected water (OSPW) are produced during the extraction of bitumen from oil sands in Alberta, Canada. The degradation of a model naphthenic acid, cyclohexanoic acid (CHA), and real naphthenic acids (NAs) from OSPW were investigated in the presence of peroxydisulfate (S(2)O(8)(2-)) and zerovalent iron (ZVI). For the model compound CHA (50 mg/L), in the presence of ZVI and 500 mg/L S(2)O(8)(2-), the concentration decreased by 45% after 6 days of treatment at 20 °C, whereas at 40, 60, and 80 °C the concentration decreased by 20, 45 and 90%, respectively, after 2 h of treatment.
View Article and Find Full Text PDFAs the range of applications for carbon nanotubes (CNTs) rapidly expands, understanding the effect of CNTs on prokaryotic and eukaryotic cell systems has become an important research priority, especially in light of recent reports of the facile dispersion of CNTs in a variety of aqueous systems including natural water. In this study, single-walled carbon nanotubes (SWCNTs) were dispersed in water using a range of natural (gum arabic, amylose, Suwannee River natural organic matter) and synthetic (polyvinyl pyrrolidone, Triton X-100) dispersing agents (dispersants) that attach to the CNT surface non-covalently via different physiosorption mechanisms. The charge and the average effective hydrodynamic diameter of suspended SWCNTs as well as the concentration of exfoliated SWCNTs in the dispersion were found to remain relatively stable over a period of 4 weeks.
View Article and Find Full Text PDF