Microfluidic lab-on-a-chip devices are changing the way that diagnostics and drug development are conducted, based on the increased precision, miniaturization and efficiency of these systems relative to prior methods. However, the full potential of microfluidics as a platform for therapeutic medical devices such as extracorporeal organ support has not been realized, in part due to limitations in the ability to scale current designs and fabrication techniques toward clinically relevant rates of blood flow. Here we report on a method for designing and fabricating microfluidic devices supporting blood flow rates per layer greater than 10 mL min for respiratory support applications, leveraging advances in precision machining to generate fully three-dimensional physiologically-based branching microchannel networks.
View Article and Find Full Text PDFAdvances in microfluidics technologies have spurred the development of a new generation of microfluidic respiratory assist devices, constructed using microfabrication techniques capable of producing microchannel dimensions similar to those found in human capillaries and gas transfer films in the same thickness range as the alveolar membrane. These devices have been tested in laboratory settings and in some cases in extracorporeal animal experiments, yet none have been advanced to human clinical studies. A major challenge in the development of microfluidic oxygenators is the difficulty in scaling the technology toward high blood flows necessary to support adult humans; such scaling efforts are often limited by the complexity of the fabrication process and the manner in which blood is distributed in a three-dimensional network of microchannels.
View Article and Find Full Text PDF