The UV Index was established more than 20 years ago as a tool for sun protection and health care. Shortly after its introduction, UV Index monitoring started in several countries either by newly acquired instruments or by converting measurements from existing instruments into the UV Index. The number of stations and networks has increased over the years.
View Article and Find Full Text PDFThe diurnal and annual variability of solar UV radiation in Europe is described for different latitudes, seasons and different biologic weighting functions. For the description of this variability under cloudless skies the widely used one-dimensional version of the radiative transfer model UVSPEC is used. We reconfirm that the major factor influencing the diurnal and annual variability of UV irradiance is solar elevation.
View Article and Find Full Text PDFTo quantify the effect of ambient temperature on the voltage signal of Solar Light UV-Biometers, spectral response functions of two instruments were determined in the laboratory under various external temperature conditions. Despite the biometer's internal temperature stabilization, a temperature increase of 20 degrees C at the outside of an instrument's housing resulted in a reduction of the instrument's spectral response by as much as 10% in the UVB range and by as much as a factor of 2 in the UVA range, depending on the individual instrument and on its internal relative humidity. The significance of this effect for outdoor measurements is demonstrated by data from an intercomparison campaign of erythemal radiometers in Thessaloniki, Greece, organized by the Laboratory of Atmospheric Physics (Aristotle University of Thessaloniki), the Cooperation in Science and Technology (European Commission), and the World Meteorological Organization.
View Article and Find Full Text PDF