Publications by authors named "Alkemade A"

The thalamus has a key role in mediating cortical-subcortical interactions but is often neglected in neuroimaging studies, which mostly focus on changes in cortical structure and activity. One of the main reasons for the thalamus being overlooked is that the delineation of individual thalamic nuclei via neuroimaging remains controversial. Indeed, neuroimaging atlases vary substantially regarding which thalamic nuclei are included and how their delineations were established.

View Article and Find Full Text PDF

Postmortem magnetic resonance imaging (MRI) can provide a bridge between histological observations and the in vivo anatomy of the human brain. Approaches aimed at the co-registration of data derived from the two techniques are gaining interest. Optimal integration of the two research fields requires detailed knowledge of the tissue property requirements for individual research techniques, as well as a detailed understanding of the consequences of tissue fixation steps on the imaging quality outcomes for both MRI and histology.

View Article and Find Full Text PDF

Response inhibition and interference resolution are often considered subcomponents of an overarching inhibition system that utilizes the so-called cortico-basal-ganglia loop. Up until now, most previous functional magnetic resonance imaging (fMRI) literature has compared the two using between-subject designs, pooling data in the form of a meta-analysis or comparing different groups. Here, we investigate the overlap of activation patterns underlying response inhibition and interference resolution on a within-subject level, using ultra-high field MRI.

View Article and Find Full Text PDF

We present the first three-dimensional (3D) concordance maps of cyto- and fiber architecture of the human brain, combining histology, immunohistochemistry, and 7-T quantitative magnetic resonance imaging (MRI), in two individual specimens. These 3D maps each integrate data from approximately 800 microscopy sections per brain, showing neuronal and glial cell bodies, nerve fibers, and interneuronal populations, as well as ultrahigh-field quantitative MRI, all coaligned at the 200-μm scale to the stacked blockface images obtained during sectioning. These unprecedented 3D multimodal datasets are shared without any restrictions and provide a unique resource for the joint study of cell and fiber architecture of the brain, detailed anatomical atlasing, or modeling of the microscopic underpinnings of MRI contrasts.

View Article and Find Full Text PDF

In order to further our understanding of brain function and the underlying networks, more advanced diffusion weighted magnetic resonance imaging (DWI MRI) data are essential. Here we present freely available high-resolution multi-shell multi-directional 3 Tesla (T) DWI MRI data as part of the 'Amsterdam Ultra-high field adult lifespan database' (AHEAD). The 3T DWI AHEAD dataset include 1.

View Article and Find Full Text PDF

The human subcortex comprises hundreds of unique structures. Subcortical functioning is crucial for behavior, and disrupted function is observed in common neurodegenerative diseases. Despite their importance, human subcortical structures continue to be difficult to study in vivo.

View Article and Find Full Text PDF

Deep Brain Stimulation (DBS) is an effective neurosurgical treatment to alleviate motor symptoms of advanced Parkinson's disease. Due to its potential, DBS usage is rapidly expanding to target a large number of brain regions to treat a wide range of diseases and neuropsychiatric disorders. The identification and validation of new target regions heavily rely on the insights gained from rodent and primate models.

View Article and Find Full Text PDF

The growing interest in the human subcortex is accompanied by an increasing number of parcellation procedures to identify deep brain structures in magnetic resonance imaging (MRI) contrasts. Manual procedures continue to form the gold standard for parcellating brain structures and is used for the validation of automated approaches. Performing manual parcellations is a tedious process which requires a systematic and reproducible approach.

View Article and Find Full Text PDF

The human subthalamic nucleus (STN) is a small lens shaped iron rich nucleus, which has gained substantial interest as a target for deep brain stimulation surgery for a variety of movement disorders. The internal anatomy of the human STN has not been fully elucidated, and an intensive debate, discussing the level of overlap between putative limbic, associative, and motor zones within the STN is still ongoing. In this chapter, we have summarized anatomical information obtained using different neuroimaging modalities focusing on the anatomy of the STN.

View Article and Find Full Text PDF

In Parkinson's disease, the depletion of iron-rich dopaminergic neurons in nigrosome 1 of the substantia nigra precedes motor symptoms by two decades. Methods capable of monitoring this neuronal depletion, at an early disease stage, are needed for early diagnosis and treatment monitoring. Magnetic resonance imaging (MRI) is particularly suitable for this task due to its sensitivity to tissue microstructure and in particular, to iron.

View Article and Find Full Text PDF

The focus of this article is to compare twenty normative and open-access neuroimaging databases based on quantitative measures of image quality, namely, signal-to-noise (SNR) and contrast-to-noise ratios (CNR). We further the analysis through discussing to what extent these databases can be used for the visualization of deeper regions of the brain, such as the subcortex, as well as provide an overview of the types of inferences that can be drawn. A quantitative comparison of contrasts including T1-weighted (T1w) and T2-weighted (T2w) images are summarized, providing evidence for the benefit of ultra-high field MRI.

View Article and Find Full Text PDF

The human subcortex is comprised of more than 450 individual nuclei which lie deep in the brain. Due to their small size and close proximity, up until now only 7% have been depicted in standard MRI atlases. Thus, the human subcortex can largely be considered as terra incognita.

View Article and Find Full Text PDF

7 Tesla (7T) magnetic resonance imaging holds great promise for improved visualization of the human brain for clinical purposes. To assess whether 7T is superior regarding localization procedures of small brain structures, we compared manual parcellations of the red nucleus, subthalamic nucleus, substantia nigra, globus pallidus interna and externa. These parcellations were created on a commonly used clinical anisotropic clinical 3T with an optimized isotropic (o)3T and standard 7T scan.

View Article and Find Full Text PDF

magnetic resonance imaging (MRI) studies on the human brain are of great interest for the validation of MRI. It facilitates a link between functional and anatomical information available from MRI and neuroanatomical knowledge available from histology/immunocytochemistry. However, linking and MRI to microscopy techniques poses substantial challenges.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) of the subthalamic nucleus is a neurosurgical intervention for Parkinson's disease patients who no longer appropriately respond to drug treatments. A small fraction of patients will fail to respond to DBS, develop psychiatric and cognitive side-effects, or incur surgery-related complications such as infections and hemorrhagic events. In these cases, DBS may require recalibration, reimplantation, or removal.

View Article and Find Full Text PDF

The subthalamic nucleus (STN) is a core basal ganglia structure involved in the control of motor, cognitive, motivational and affective functions. The (challenged) tripartite subdivision hypothesis places these functions into distinct sensorimotor, cognitive/associative, and limbic subregions based on the topography of cortical projections. To a large extent, this hypothesis is used to motivate the choice of target coordinates for implantation of deep brain stimulation electrodes for treatment of neurological and psychiatric disorders.

View Article and Find Full Text PDF

Sub-millimeter imaging at 7T has opened new possibilities for qualitatively and quantitatively studying brain structure as it evolves throughout the life span. However, subject motion introduces image blurring on the order of magnitude of the spatial resolution and is thus detrimental to image quality. Such motion can be corrected for, but widespread application has not yet been achieved and quantitative evaluation is lacking.

View Article and Find Full Text PDF

Normative databases allow testing of novel hypotheses without the costly collection of magnetic resonance imaging (MRI) data. Here we present the Amsterdam Ultra-high field adult lifespan database (AHEAD). The AHEAD consists of 105 7 Tesla (T) whole-brain structural MRI scans tailored specifically to imaging of the human subcortex, including both male and female participants and covering the entire adult life span (18-80 yrs).

View Article and Find Full Text PDF

Modern high field and ultra high field magnetic resonance imaging (MRI) experiments routinely collect multi-dimensional data with high spatial resolution, whether multi-parametric structural, diffusion or functional MRI. While diffusion and functional imaging have benefited from recent advances in multi-dimensional signal analysis and denoising, structural MRI has remained untouched. In this work, we propose a denoising technique for multi-parametric quantitative MRI, combining a highly popular denoising method from diffusion imaging, over-complete local PCA, with a reconstruction of the complex-valued MR signal in order to define stable estimates of the noise in the decomposition.

View Article and Find Full Text PDF

The subthalamic nucleus (STN) is successfully used as a surgical target for deep brain stimulation in the treatment of movement disorders. Interestingly, the internal structure of the STN is still incompletely understood. The objective of the present study was to investigate three-dimensional (3D) immunoreactivity patterns for 12 individual protein markers for GABA-ergic, serotonergic, dopaminergic as well as glutamatergic signaling.

View Article and Find Full Text PDF

How, and to what extent do size and shape of a voxel measured with magnetic resonance imaging (MRI) affect the ability to visualize small brain nuclei? Despite general consensus that voxel geometry affects volumetric properties of regions of interest, particularly those of small brain nuclei, no quantitative data on the influence of voxel size and shape on labeling accuracy is available. Using simulations, we investigated the selective influence of voxel geometry by reconstructing simulated ellipsoid structures with voxels varying in shape and size. For each reconstructed ellipsoid, we calculated differences in volume and similarity between the labeled volume and the predefined dimensions of the ellipsoid.

View Article and Find Full Text PDF

Non-invasive neuroimaging techniques provide a wide array of possibilities to study human brain function. A number of approaches are available that improve our understanding of the anatomical location of brain activation patterns, including the development of probabilistic conversion tools to register individual data to population based neuroanatomical templates. Two elegant examples were published by Horn et al.

View Article and Find Full Text PDF

The subthalamic nucleus (STN) plays a crucial role in the surgical treatment of Parkinson's disease (PD). Studies investigating optimal protocols for STN visualization using state of the art magnetic resonance imaging (MRI) techniques have shown that susceptibility weighted images, which display the magnetic susceptibility distribution, yield better results than T1-weighted, T2-weighted, and T2*-weighted contrasts. However, these findings are based on young healthy individuals, and require validation in elderly individuals and persons suffering from PD.

View Article and Find Full Text PDF

The human subcortex is a densely populated part of the brain, of which only 7% of the individual structures are depicted in standard MRI atlases. In vivo MRI of the subcortex is challenging owing to its anatomical complexity and its deep location in the brain. The technical advances that are needed to reliably uncover this 'terra incognita' call for an interdisciplinary human neuroanatomical approach.

View Article and Find Full Text PDF