Publications by authors named "Alka Jaggessar"

The spread of respiratory diseases has gained significant attention since the detection and rapid global spread of COVID-19. Respiratory viruses are commonly transmitted when an infected person coughs or sneezes onto a surface, infecting persons who subsequently contact this surface. For this reason, developing surfaces with inherent antipathogenic properties is crucially needed for controlling the spread of deadly pathogens.

View Article and Find Full Text PDF

The rapid emergence and global spread of the COVID-19 causing Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and its subsequent mutated strains has caused unprecedented health, economic, and social devastation. Respiratory viruses such as SARS-CoV-2 can be transmitted through both direct and indirect channels, including aerosol respiratory droplets, contamination of inanimate surfaces (fomites), and direct person-to-person contact. Current methods of virus inactivation on surfaces include chemicals and biocides, and while effective, continuous and repetitive cleaning of all surfaces is not always viable.

View Article and Find Full Text PDF

Since the discovery of the bactericidal properties of cicada wing surfaces, there has been a surge in the number of studies involving antibacterial nanostructured surfaces (NSS). Studies show that there are many parameters (and thus, thousands of parameter combinations) that influence the bactericidal efficiency (BE) of these surfaces. Researchers attempted to correlate these parameters to BE but have so far been unsuccessful.

View Article and Find Full Text PDF

Nanopatterned surfaces administer antibacterial activity through contact-induced mechanical stresses and strains, which can be modulated by changing the nanopattern's radius, spacing and height. However, due to conflicting recommendations throughout the theoretical literature with poor agreement to reported experimental trends, it remains unclear whether these key dimensions-particularly radius and spacing-should be increased or decreased to maximize bactericidal efficiency. It is shown here that a potential failure of biophysical models lies in neglecting any out-of-plane effects of nanopattern contact.

View Article and Find Full Text PDF

In recent times, large research focus has been placed on nanostructured materials as a method of killing bacteria. Previous work in this area has found that hydrothermally synthesised TiO nanostructures show antibacterial behaviour against Gram-positive and Gram-negative bacteria strains. Various sources postulate that certain surface properties, such as wettability and structure dimensions are responsible for, and influence bactericidal efficiency of nanostructured surfaces.

View Article and Find Full Text PDF

Orthopaedic surgery comes with an inherent risk of bacterial infection, prolonged antibiotic therapy and revision surgery. Recent research has focused on nanostructured surfaces to improve the bactericidal and osseointegrational properties of implants. However, an understanding of the mechanical properties of bactericidal materials is lacking.

View Article and Find Full Text PDF

The application of orthopaedic implants is associated with risks of bacterial infection and long-term antibiotic therapy. This problem has led to the study of implants with nano-textured surfaces as a method of inhibiting bacterial adhesion and reducing implant failure due to infection. In this research, various nano-textured surfaces of TiO were synthesised using hydrothermal synthesis, by varying NaOH concentration, reaction time and reaction temperature.

View Article and Find Full Text PDF

Orthopaedic and dental implants have become a staple of the medical industry and with an ageing population and growing culture for active lifestyles, this trend is forecast to continue. In accordance with the increased demand for implants, failure rates, particularly those caused by bacterial infection, need to be reduced. The past two decades have led to developments in antibiotics and antibacterial coatings to reduce revision surgery and death rates caused by infection.

View Article and Find Full Text PDF