Publications by authors named "Alka Agarwal-Mawal"

We investigated whether expression of cholesterol ester transfer protein (CETP) in mice alters the regulation of cholesterol metabolism. Transgenic mice expressing human CETP (CETP-TG) and nontransgenic littermates (non-TG) were fed either a monounsaturated fatty acid (MUFA) or a saturated fatty acid (SFA)-rich diet in the presence or absence of cholesterol. Mice fed with MUFA diet had higher CETP activity compared with SFA-fed mice.

View Article and Find Full Text PDF

Transgenic technologies provide a promising means by which desirable traits can be introduced into cultured fish species within a single generation thus accelerating the production of genetically superior broodstock for aquaculture. However, before such fish are allowed to be marketed as food they must receive government regulatory approval. Two pivotal regulatory requirements are: (1) complete characterization of the genomically integrated transgene and, (2) demonstration that the transgene remains stable over multiple generations.

View Article and Find Full Text PDF

Cholesteryl ester transfer protein (CETP) is a key protein involved in the reverse cholesterol transport pathway. The regulation of CETP by dietary fats is not clearly understood. Transgenic mice expressing human CETP under the control of its natural flanking region were fed low- or high-fat diets enriched in monounsaturated fatty acids (MUFAs) or saturated fatty acids in the presence or absence of cholesterol.

View Article and Find Full Text PDF

BACKGROUND: Cholesterol ester transfer protein (CETP) plays a major role in regulating the levels of LDL- and HDL-cholesterol. We previously observed a fish-oil-induced elevation of low-density lipoprotein (LDL)-and very-low-density lipoprotein (VLDL)-cholesterol concentrations and a decrease in high-density lipoprotein (HDL)-cholesterol concentration in F1B hamsters. The molecular mechanism/s by which fish oil induces hyperlipidaemic effect was investigated in this study.

View Article and Find Full Text PDF

In mammalian brain, tau, glycogen synthase kinase 3beta (GSK3beta), and 14-3-3, a phosphoserine-binding protein, are parts of a multiprotein tau phosphorylation complex. Within the complex, 14-3-3 simultaneously binds to tau and GSK3beta (Agarwal-Mawal, A., Qureshi, H.

View Article and Find Full Text PDF

In a recent study, we reported that in bovine brain extract, glycogen synthase kinase-3beta and tau are parts of an approximately 400-500 kDa microtubule-associated tau phosphorylation complex (Sun, W., Qureshi, H. Y.

View Article and Find Full Text PDF

In Alzheimer's disease, microtubule-associated protein tau is hyperphosphorylated by an unknown mechanism and is aggregated into paired helical filaments. Hyperphosphorylation causes loss of tau function, microtubule instability, and neurodegeneration. Glycogen synthase kinase-3beta (GSK3beta) has been implicated in the phosphorylation of tau in normal and Alzheimer's disease brain.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3q83h0enkhu4b8fbgajpagbgdorr9ohv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once