Redirecting anthropogenic waste phosphorus (P) flows from receiving water bodies to high P demand agricultural fields requires a resource management approach that integrates biogeochemistry, agronomy, engineering, and economics. In the US Midwest, agricultural reuse of P recovered from spatially colocated waste streams stands to reduce point-source P discharges, meet agricultural P needs, and-depending on the speciation of recovered P-mitigate P losses from agriculture. However, the speciation of P recovered from waste streams via its chemical transformation-referred to here as recovered P (rP) differs markedly based on waste stream composition and recovery method, which can further interact with soil and crop characteristics of agricultural sinks.
View Article and Find Full Text PDFWhile the redox active backbone of bis(phosphino)ferrocene ligands is often cited as an important feature of these ligands in catalytic studies, the structural parameters of oxidized bis(phosphino)ferrocene ligands have not been thoroughly studied. The reaction of [Re(CO)3(dippf)Br] (dippf = 1,1'-bis(diiso-propylphosphino)ferrocene) and [NO][BF4] in methylene chloride yields the oxidized compound, [Re(CO)3(dippf)Br][BF4]. The oxidized species, [Re(CO)3(dippf)Br][BF4], and the neutral species, [Re(CO)3(dippf)Br], are compared using X-ray crystallography, cyclic voltammetry, visible spectroscopy, IR spectroscopy and zero-field (57)Fe Mössbauer spectroscopy.
View Article and Find Full Text PDF