The specific heat capacity of nanofluids is a fundamental thermophysical property that measures the heat storage capacity of the nanofluids. is usually determined through experimental measurement. As it is known, experimental procedures are characterised with some complexities, which include, the challenge of preparing stable nanofluids and relatively long periods to conduct experiments.
View Article and Find Full Text PDFBackground And Objectives: The refractive index of hemoglobin plays important role in hematology due to its strong correlation with the pathophysiology of different diseases. Measurement of the real part of the refractive index remains a challenge due to strong absorption of the hemoglobin especially at relevant high physiological concentrations. So far, only a few studies on direct measurement of refractive index have been reported and there are no firm agreements on the reported values of refractive index of hemoglobin due to measurement artifacts.
View Article and Find Full Text PDFThe optical properties of blood play crucial roles in medical diagnostics and treatment, and in the design of new medical devices. Haemoglobin is a vital constituent of the blood whose optical properties affect all of the optical properties of human blood. The refractive index of haemoglobin has been reported to strongly depend on its concentration which is a function of the physiology of biological cells.
View Article and Find Full Text PDF