Publications by authors named "Alix Sournia Saquet"

Functional pincer ligands that engage in metal-ligand cooperativity and/or are capable of redox non-innocence have found a great deal of success in catalysis. These two properties may be found in metal complexes of the 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. With this goal in mind, we have attempted the coordination of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine (LCF3) and its Bu analogue 2,6-bis(5--butylpyrazol-3-yl)pyridine (LtBu) to Mo(0) by reactions with mixed phosphine/carbonyl complexes [Mo(CO)(MeCN)(PMePh)] 1-3 (1 ≤ ≤ 3).

View Article and Find Full Text PDF

A family of dithienosilole-based dyes with alternating donor and acceptor conjugated groups, decorated with linear or branched alkyl chains at different positions on the backbone, have been obtained and investigated in different aggregation states. These dyes are characterized by almost panchromatic absorption and by near-IR emission, with good quantum yields in a variety of solvents with different polarity. We demonstrate that the nature and position of the alkyl substituents strongly govern the self-assembly of the dyes, whose packing is also sensitive to external stimuli, such as grinding and water addition.

View Article and Find Full Text PDF

The carbon dioxide radical anion [CO˙] is a highly reactive species of fundamental and synthetic interest. However, the direct one-electron reduction of CO to generate [CO˙] occurs at very negative reduction potentials, which is often a limiting factor for applications. Here, we show that NHC-CO-BR species - generated from the Frustrated Lewis Pair (FLP)-type activation of CO by N-heterocyclic carbenes (NHCs) and boranes (BR) - undergo single electron reduction at a less negative potential than free CO.

View Article and Find Full Text PDF

A fundamental challenge for phototriggered therapies is to obtain robust molecular frameworks that can withstand biological media. Photoactivatable nitric oxide (NO) releasing molecules (photoNORMs) based on ruthenium nitrosyl (RuNO) complexes are among the most studied systems due to several appealing features that make them attractive for therapeutic applications. Nevertheless, the propensity of the NO ligand to be attacked by nucleophiles frequently manifests as significant instability in water for this class of photoNORMs.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how adding benzoyl peroxide to [Co(acac)] generates a new cobalt complex, [Co(acac)(OCPh)], notable for its specific coordination and magnetic properties.
  • The new cobalt complex degrades slowly when heated, leading to the production of benzoate radicals, which can initiate controlled radical polymerization of vinyl acetate.
  • The effects of different ligands on the stability and efficiency of the cobalt complex during this process are analyzed, revealing insights into the mechanisms of radical polymerization and the efficiency challenges in prior studies using cobalt peroxides.
View Article and Find Full Text PDF

An antileishmanial structure−activity relationship (SAR) study focused on positions 2 and 8 of the imidazo[1,2-a]pyridine ring was conducted through the synthesis of 22 new derivatives. After being screened on the promatigote and axenic amastigote stages of Leishmania donovani and L. infantum, the best compounds were tested against the intracellular amastigote stage of L.

View Article and Find Full Text PDF

The coordination chemistry of the N-heterocyclic carbene ligand IMes, derived from the well-known IMes ligand by substitution of the carbenic heterocycle with two dimethylamino groups, was investigated with d [Mn(I), Fe(II)], d [Rh(I)], and d [Cu(I)] transition-metal centers. The redox behavior of the resulting organometallic complexes was studied through a combined experimental/theoretical study, involving electrochemistry, EPR spectroscopy, and DFT calculations. While the complexes [CuCl(IMes)], [RhCl(COD)(IMes)], and [FeCp(CO) (IMes)](BF) exhibit two oxidation waves, the first oxidation wave is fully reversible but only for the first complex the second oxidation wave is reversible.

View Article and Find Full Text PDF

Resistance switching properties of nanoscale junctions of spin crossover molecules have received recently much interest. In many cases, this property has been traced back to the variation of molecular orbital energies upon spin transition. However, one can also expect a substantial reorganization of the molecular structure due to charge localization, which calls for a better understanding of the relationship between the redox potential and the spin state of the molecule.

View Article and Find Full Text PDF

To study the antikinetoplastid 3-nitroimidazo[1,2-a]pyridine pharmacophore, a structure-activity relationship study was conducted through the synthesis of 26 original derivatives and their in vitro evaluation on both Leishmania spp and Trypanosoma brucei brucei. This SAR study showed that the antitrypanosomal pharmacophore was less restrictive than the antileishmanial one and highlighted positions 2, 6 and 8 of the imidazopyridine ring as key modulation points. None of the synthesized compounds allowed improvement in antileishmanial activity, compared to previous hit molecules in the series.

View Article and Find Full Text PDF

A pharmacophore design approach, based on the coordination chemistry of an intimate molecular hybrid of active metabolites of pro-drugs, known to release active species upon enzymatic oxidative activation, is devised. This is exemplified by combining two anti-mycobacterial drugs: pyrazinamide (first line) and delamanid (third line) whose active metabolites are pyrazinoic acid (PyzCOOH) and likely nitroxyl (HNO (or NO)), respectively. Aiming to generate those active species, a hybrid compound was envisaged by coordination of pyrazine-2-hydroxamic acid (PyzCONHOH) with a Na[Fe(CN)] moiety.

View Article and Find Full Text PDF

An antikinetoplastid pharmacomodulation study was done at position 8 of a previously identified pharmacophore in 3-nitroimidazo[1,2-a]pyridine series. Twenty original derivatives bearing an alkynyl moiety were synthesized via a Sonogashira cross-coupling reaction and tested in vitro, highlighting 3 potent (40 nM ≤ EC blood stream form≤ 70 nM) and selective (500 ≤ SI ≤ 1800) anti-T. brucei brucei molecules (19, 21 and 22), in comparison with four reference drugs.

View Article and Find Full Text PDF

An antikinetoplastid pharmacomodulation study was conducted at position 6 of the 8-nitroquinolin-2(1)-one pharmacophore. Fifteen new derivatives were synthesized and evaluated against , , and , in parallel with a cytotoxicity assay on the human HepG2 cell line. A potent and selective 6-bromo-substituted antitrypanosomal derivative was revealed, presenting EC values of 12 and 500 nM on trypomastigotes and amastigotes respectively, in comparison with four reference drugs (30 nM ≤ EC ≤ 13 μM).

View Article and Find Full Text PDF

The anionic 5-acetylimidazol-2-ylidene-4-olate , named as "IMes-acac", is composed of fused diaminocarbene and acetylacetonato units in the same IMes-based imidazolyl ring. The bifunctional compound is shown to act as an effective, ditopic bridging ligand for transition metal centers. Several new complexes supported by this ligand were prepared, including the complex [RuCl(-Cym)(κ ,-·H)](BF) (), which can be regarded as a metallated imidazolium salt, the homobimetallic complex [((COD)Rh)(RhCl(COD))(μ-1κ ,:2κ -)] (), the heterobimetallic complexes [((-Cym)ClRu)(RhCl(COD))(μ-1κ ,:2κ -)] (), [((-Cym)ClRu)(RhCl(CO))(μ-1κ ,2κ -)] (), [((-Cym)ClRu)(Cu(IPr))(μ-1κ ,:2κ -)] (), the anionic homoleptic Cu(I) complexes [Cu(κ -)]K ([]K) and [Cu(κ -)](NEt) ([](NEt)), and the heterotrimetallic complex [((-Cym)RuCl)(Cu)(μ-1κ ,:3κ -)(μ-2κ ,:3κ -)](PF) ().

View Article and Find Full Text PDF

Twenty nine original 3-nitroimidazo[1,2-]pyridine derivatives, bearing a phenylthio (or benzylthio) moiety at position 8 of the scaffold, were synthesized. evaluation highlighted compound as an antiparasitic hit molecule displaying low cytotoxicity for the human HepG2 cell line (CC > 100 μM) alongside good antileishmanial activities (IC = 1-2.1 μM) against , , and ; and good antitrypanosomal activities (IC = 1.

View Article and Find Full Text PDF

The electronic and structural properties of ten heteroleptic [Cu(NN)(PP)] complexes have been investigated. NN indicates 1,10-phenanthroline (phen) or 4,7-diphenyl-1,10-phenanthroline (Bphen); each of these ligands is combined with five PP bis-phosphine chelators, i.e.

View Article and Find Full Text PDF

Ethionamide is a key antibiotic prodrug of the second-line chemotherapy regimen to treat tuberculosis. It targets the biosynthesis of mycolic acids thanks to a mycobacterial bioactivation carried out by the Baeyer-Villiger monooxygenase EthA, under the control of a transcriptional repressor called EthR. Recently, the drug-like molecule SMARt-420, which triggers a new transcriptional regulator called EthR2, allowed the derepression a cryptic alternative bioactivation pathway of ethionamide.

View Article and Find Full Text PDF

An antikinetoplastid pharmacomodulation study at position 3 of the recently described hit molecule 3-bromo-8-nitroquinolin-2(1H)-one was conducted. Twenty-four derivatives were synthesised using the Suzuki-Miyaura cross-coupling reaction and evaluated in vitro on both Leishmania infantum axenic amastigotes and Trypanosoma brucei brucei trypomastigotes. Introduction of a para-carboxyphenyl group at position 3 of the scaffold led to the selective antitrypanosomal hit molecule 3-(4-carboxyphenyl)-8-nitroquinolin-2(1H)-one (21) with a lower reduction potential (-0.

View Article and Find Full Text PDF

Based on a previously identified antileishmanial 6,8-dibromo-3-nitroimidazo[1,2-a]pyridine derivative, a Suzuki-Miyaura coupling reaction at position 8 of the scaffold was studied and optimized from a 8-bromo-6-chloro-3-nitroimidazo[1,2-a]pyridine substrate. Twenty-one original derivatives were prepared, screened in vitro for activity against L. infantum axenic amastigotes and T.

View Article and Find Full Text PDF
Article Synopsis
  • IMes-derived thioureas featuring imidazolyl rings can have one or two dimethylamino groups attached, making them capable of undergoing oxidation.
  • These compounds show different oxidation states depending on the number of amino groups present—one for a single dimethylamino group and two for two groups.
  • The study focuses on how the structure, stability, and electronic properties of these oxidized forms are significantly influenced by the dimethylamino substituents.
View Article and Find Full Text PDF

To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.

View Article and Find Full Text PDF

The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MTB) represents a major threat to global health. Isoniazid (INH) is a prodrug used in the first-line treatment of tuberculosis. It undergoes oxidation by a catalase-peroxidase KatG, leading to generation of an isonicotinoyl radical that reacts with NAD(H) forming the INH-NADH adduct as the active metabolite.

View Article and Find Full Text PDF

A new concept is presented, namely the synthesis of dendrimers intrinsically composed in alternation of building blocks pertaining to two known families of dendrimers: phosphorhydrazone dendrimers and triazine-piperazine dendrimers. These mixed dendrimers with layered controlled architecture inherit their easy (31) P NMR characterization and their thermal stability from the phosphorhydrazone family, and their decreased solubility from the triazine-piperazine family. However, they have also their own and original characteristics.

View Article and Find Full Text PDF

An efficient system for the catalytic redox isomerization of the allylic alcohol 1-octen-3-ol to 3-octanone is presented. The homogeneous ruthenium(II) catalyst contains a monodentate phosphane ligand with a ferrocene moiety in the backbone and provides 3-octanone in quantitative yields. The activity is increased by nearly 90 % with respect to the corresponding triphenyl phosphane ruthenium(II) complex.

View Article and Find Full Text PDF

The non-controlled redox-active metal ions, especially copper, in the brain of patients with Alzheimer disease (AD) should be considered at the origin of the intense oxidative damage in the AD brain. Several bis(8-aminoquinoline) ligands, such as 1 and PA1637, are able to chelate Cu(2+) with high affinity, and are specific chelators of copper with respect to iron and zinc. They are able to efficiently extract Cu(2+) from a metal-loaded amyloid.

View Article and Find Full Text PDF

The ligand-exchange reaction has been investigated to synthesize nickel bis(dithiolene) complexes bearing one hydroxyl functional group aimed at being grafted thereafter onto polymer materials. This reaction leads easily to heteroleptic complexes with the ethylene-1,2-dithiolato core substituted by either alkyl or aryl moieties. Details on synthetic parameters are given.

View Article and Find Full Text PDF