Objectives: Breast milk transforming growth factor (TGF)-β2 is associated with healthy immune maturation and reduced risk of immune-mediated disease in infants. We sought to investigate whether conditioning with TGF-β2 may result in a more mature immune responder phenotype in immature human intestinal epithelial cells (IECs).
Methods: Primary human fetal IECs (hFIECs) and the human fetal small intestinal epithelial cell line (H4 cells) were conditioned with breast milk levels of TGF-β2, and an inflammatory response was subsequently induced.
Background: Breast milk is known to protect the infant against infectious and immuno-inflammatory diseases, but the mechanisms of this protection are poorly understood.
Objectives: We hypothesized that transforming growth factor-β₂ (TGF-β₂), an immunoregulatory cytokine abundant in breast milk, may have a direct anti-inflammatory effect on immature human intestinal epithelial cells (IECs).
Methods: Human fetal ileal organ culture, primary human fetal IECs, and the human fetal small intestinal epithelial cell line H4 were stimulated with interleukin 1β (IL-1β) with or without TGF-β₂.
Background: Adiponectin, a circulating adipocyte protein, is associated with lower obesity. We have previously shown that adiponectin is present in human milk. This study determined whether higher milk adiponectin is associated with infant growth and investigated milk adiponectin's oligomeric form.
View Article and Find Full Text PDFThe incorporation of caseins and whey proteins into acid gels produced from unheated and heat treated skimmed milk was studied by confocal scanning laser microscopy (CSLM) using fluorescent labelled proteins. Bovine casein micelles were labelled using Alexa Fluor 594, while whey proteins were labelled using Alexa Fluor 488. Samples of the labelled protein solutions were introduced into aliquots of pasteurised skim milk, and skim milk heated to 90 degrees C for 2 min and 95 degrees C for 8 min.
View Article and Find Full Text PDF