Species rarity is a common phenomenon across global ecosystems that is becoming increasingly more common under climate change. Although species rarity is often considered to be a stochastic response to environmental and ecological constraints, we examined the hypothesis that plant rarity is a consequence of natural selection acting on performance traits that affect a species range size, habitat specificity, and population aggregation; three primary descriptors of rarity. Using a common garden of 25 species of Tasmanian , we find that the rarest species have 70% lower biomass than common species.
View Article and Find Full Text PDFRare species are often considered inferior competitors due to occupancy of small ranges, specific habitats, and small local populations. However, the phylogenetic relatedness and rarity level (level 1-7 and common) of interacting species in plant-plant interactions are not often considered when predicting the response of rare plants in a biotic context. We used a common garden of 25 species of Tasmanian Eucalyptus, to differentiate non-additive patterns in the biomass of rare versus common species when grown in mixtures varying in phylogenetic relatedness and rarity.
View Article and Find Full Text PDF