Sleep disturbance is a common and disruptive symptom of neurodegenerative diseases such as Alzheimer's and Huntington's disease (HD). In HD patients, sleep fragmentation appears at an early stage of disease, although features of the earliest sleep abnormalities in presymptomatic HD are not fully established. Here we used novel automated analysis of quantitative electroencephalography to study transitions between wake and non-rapid eye movement sleep in a sheep model of presymptomatic HD.
View Article and Find Full Text PDFSleep disruption is a common invisible symptom of neurological dysfunction in Huntington's disease (HD) that takes an insidious toll on well-being of patients. Here we used electroencephalography (EEG) to examine sleep in 6 year old OVT73 transgenic sheep (Ovis aries) that we used as a presymptomatic model of HD. We hypothesized that despite the lack of overt symptoms of HD at this age, early alterations of the sleep-wake pattern and EEG powers may already be present.
View Article and Find Full Text PDFSleep spindles are distinctive transient patterns of brain activity that typically occur during non-rapid eye movement (NREM) sleep in humans and other mammals. Thought to be important for the consolidation of learning, they may also be useful for indicating the progression of aging and neurodegenerative diseases. The aim of this study was to characterize sleep spindles in sheep ().
View Article and Find Full Text PDFRumination is a precisely timed process that occupies a large part of a sheep's day. The complex motor coordination required to chew and swallow means that quantification of rumination may provide a surrogate marker for effective motor function. Here, data from 24h in vivo electrophysiological recordings, collected as part of an earlier study, were reanalysed for chewing- and swallowing-related activity.
View Article and Find Full Text PDFBackground: T-pattern analysis is a procedure developed for detecting non-randomly recurring hierarchical and multiordinal real-time sequential patterns (T-patterns).
New Method: We have inquired whether such patterns of action potentials (spikes) can be extracted from extracellular activity sampled simultaneously from many neurons across the mitral cell layer of the olfactory bulb (OB). Spikes were sampled from urethane-anaesthetized rats over a 6h recording session, or a period lasting as long as permitted by the physiological condition of the animal.
Visual imprinting in chicks and song learning in songbirds are prominent model systems for the study of the neural mechanisms of memory. In both systems, neural lateralisation has been found to be involved in memory formation. Although many processes in the human brain are lateralised--spatial memory and musical processing involves mostly right hemisphere dominance, whilst language is mostly left hemisphere dominant--it is unclear what the function of lateralisation is.
View Article and Find Full Text PDFNeural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odors and whether they can be investigated under anesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odor smelled on the breath of a demonstrator animal occurs under isofluorane anesthesia. Furthermore, subsequent exposure to this cued odor under anesthesia promotes the same pattern of increased release of glutamate and gamma-aminobutyric acid (GABA) in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten.
View Article and Find Full Text PDFBackground: How oscillatory brain rhythms alone, or in combination, influence cortical information processing to support learning has yet to be fully established. Local field potential and multi-unit neuronal activity recordings were made from 64-electrode arrays in the inferotemporal cortex of conscious sheep during and after visual discrimination learning of face or object pairs. A neural network model has been developed to simulate and aid functional interpretation of learning-evoked changes.
View Article and Find Full Text PDFWe present a statistical approach to the identification of correlated activity in multineuron spike data, based on the value of the correlation determinant. This approach is not compromised by the lack of independence often encountered in this kind of data. We illustrate our method by applying it both to simulated data and to data recorded from neurons in a forebrain region (intermediate medial mesopallium, IMM) of the behaving domestic chick and simultaneously from the corresponding contralateral region.
View Article and Find Full Text PDFBackground: There is evidence that sleep is important for memory consolidation, but the underlying neuronal changes are not well understood. We studied the effect of sleep modulation on memory and on neuronal activity in a memory system of the domestic chick brain after the learning process of imprinting. Neurons in this system become, through imprinting, selectively responsive to a training (imprinting) stimulus and so possess the properties of a memory trace.
View Article and Find Full Text PDF