Combination immune checkpoint inhibitors (nivolumab and ipilimumab) are currently a first-line treatment for mesothelioma; however, not all patients respond. The efficacy of treatment is influenced by the tumor microenvironment. Murine mesothelioma tumors were irritated with various radiotherapy doses.
View Article and Find Full Text PDFBackground/aim: Tumors exhibit impaired blood flow and hypoxic areas, which can reduce the effectiveness of treatments. Characterizing these tumor features can inform treatment decisions, including the use of vasculature modulation therapies. Imaging provides insight into these characteristics, with techniques varying between clinical and preclinical settings.
View Article and Find Full Text PDFPlatinum-based chemotherapy in combination with anti-PD-L1 antibodies has shown promising results in mesothelioma. However, the immunological mechanisms underlying its efficacy are not well understood and there are no predictive biomarkers to guide treatment decisions. Here, we combine time course RNA sequencing (RNA-seq) of peripheral blood mononuclear cells with pre-treatment tumor transcriptome data from the single-arm, phase 2 DREAM trial (N = 54).
View Article and Find Full Text PDFPurpose: To characterize the cellular responses of murine and human mesothelioma cell lines to different doses of photon radiation with a long-term aim of optimizing a clinically relevant in vivo model in which to study the interaction of radiation therapy and immunotherapy combinations.
Methods And Materials: Two murine mesothelioma cell lines (AB1 and AE17) and 3 human cell lines (BYE, MC, and JU) were used in the study. Cells were treated with increasing doses of photon radiation.
Background: Though immune checkpoint inhibition has recently shown encouraging clinical efficacy in mesothelioma, most patients do not respond. Combining immune checkpoint inhibition with radiotherapy presents an attractive option for improving treatment responses owing to the various immunomodulatory effects of radiation on tumors. However, the ideal dosing and scheduling of combined treatment remains elusive, as it is poorly studied in mesothelioma.
View Article and Find Full Text PDFAdvances in cancer immunology have increased the use of immune checkpoint inhibitors in clinical practice, however not all patients respond, and treatment can have severe side-effects. Blood-based immunological biomarkers are an attractive method for predicting which patients will respond to therapy, however, reliable biomarkers for immune checkpoint blockade are lacking. This study aimed to identify patients before or early in treatment who would best respond to PD-1 inhibitors.
View Article and Find Full Text PDFTumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers.
View Article and Find Full Text PDF: Single-agent cyclophosphamide can deplete regulatory T-cells (Treg). We aimed to determine optimal dosing and scheduling of oral cyclophosphamide, alongside pemetrexed-based chemotherapy, to deplete Treg in mesothelioma or non-small-cell lung cancer patients.: 31 Patients received pemetrexed ± cisplatin or carboplatin on day 1 of a 21-day cycle (maximum 6 cycles).
View Article and Find Full Text PDFRecent clinical breakthroughs in cancer immunotherapy, especially with immune checkpoint blockade, offer great hope for cancer sufferers - and have greatly changed the landscape of cancer treatment. However, whilst many patients achieve clinical responses, others experience minimal benefit or do not respond to immune checkpoint blockade at all. Researchers are therefore exploring multimodal approaches by combining immune checkpoint blockade with conventional cancer therapies to enhance the efficacy of treatment.
View Article and Find Full Text PDFBackground: There is a strong unmet need to improve systemic therapy in mesothelioma. Chemotherapy with cisplatin and pemetrexed improves survival in malignant pleural mesothelioma, and immune checkpoint inhibitors are an emerging treatment in this disease. We aimed to evaluate the activity of durvalumab, an anti-PD-L1 antibody, given during and after first-line chemotherapy with cisplatin and pemetrexed in patients with advanced malignant pleural mesothelioma.
View Article and Find Full Text PDFDexamethasone is a synthetic glucocorticoid commonly used for the prevention and management of side effects in cancer patients undergoing chemotherapy. While it is effective as an anti-emetic and in preventing hypersensitivity reactions, dexamethasone depletes peripheral blood lymphocytes and impacts immune responses. The effect of dexamethasone on the number and quality of tumour-infiltrating leukocytes has not been reported.
View Article and Find Full Text PDFObjective: Pleural effusion (PE) is a common feature of malignant pleural mesothelioma. These effusions typically contain lymphocytes and malignant cells. We postulated that the PE would be a source of lymphocytes for analysis of tumor immune milieu.
View Article and Find Full Text PDFThe glucocorticoid (GC) steroid dexamethasone (Dex) is used as a supportive care co-medication for cancer patients undergoing standard care pemetrexed/platinum doublet chemotherapy. As trials for new cancer immunotherapy treatments increase in prevalence, it is important to track the immunological changes induced by co-medications commonly used in the clinic, but not specifically included in trial design or in pre-clinical models. Here, we document a number of Dex -induced immunological effects, including a large-scale lymphodepletive effect particularly affecting CD4 T cells but also CD8 T cells.
View Article and Find Full Text PDFThymic epithelial cells (TECs) are critically required for T cell development, but the cellular mechanisms that maintain adult TECs are poorly understood. Here, we show that a previously unidentified subpopulation, EpCam(+)UEA1(-)Ly-51(+)PLET1(+)MHC class II(hi), which comprises <0.5% of adult TECs, contains bipotent TEC progenitors that can efficiently generate both cortical (c) TECs and medullary (m) TECs.
View Article and Find Full Text PDFCancer immunotherapy, and in particular checkpoint blockade, is now standard clinical care for a growing number of cancers. Cytotoxic drugs have been the primary weapon against cancer for a long time and have typically been understood because of their capacity to directly kill tumour cells. It is now clear that these drugs are potential partners for checkpoint blockade and different drugs can influence the immune response to cancer through a wide variety of mechanisms.
View Article and Find Full Text PDF