In this paper we explore whether countries led by women have fared better during the COVID-19 pandemic than those led by men. Media and public health officials have lauded the perceived gender-related influence on policies and strategies for reducing the deleterious effects of the pandemic. We examine this proposition by analyzing COVID-19-related deaths globally across countries led by men and women.
View Article and Find Full Text PDFCorpus selection bias in international relations research presents an epistemological problem: How do we know what we know? Most social science research in the field of text analytics relies on English language corpora, biasing our ability to understand international phenomena. To address the issue of corpus selection bias, we introduce results that suggest that machine translation may be used to address non-English sources. We use human translation and machine translation (Google Translate) on a collection of aligned sentences from United Nations documents extracted from the Multi-UN corpus, analyzed with a "bag of words" analysis tool, Linguistic Inquiry Word Count (LIWC).
View Article and Find Full Text PDF