We investigated whether characterization of full-length GAD (f-GADA) antibody (GADA) responses could identify early insulin requirement in adult-onset diabetes. In 179 f-GADA-positive participants diagnosed with type 2 diabetes, we assessed associations of truncated GADA (t-GADA) positivity, f-GADA IgG subclasses, and f-GADA affinity with early insulin requirement (<5 years), type 1 diabetes genetic risk score (T1D GRS), and C-peptide. t-GADA positivity was lower in f-GADA-positive without early insulin in comparison with f-GADA-positive type 2 diabetes requiring insulin within 5 years, and T1D (75% vs.
View Article and Find Full Text PDFAutoantibodies to glutamate decarboxylase (GADA) are widely used in the prediction and classification of type 1 diabetes. GADA radiobinding assays (RBAs) using N-terminally truncated antigens offer improved specificity, but radioisotopes limit the high-throughput potential for population screening. Luciferase-based immunoprecipitation system (LIPS) assays are sensitive and specific alternatives to RBAs with the potential to improve risk stratification.
View Article and Find Full Text PDFBackground: Zinc transporter 8 autoantibodies (ZnT8A) are thought to appear close to type 1 diabetes (T1D) onset and can identify high-risk multiple (≥2) autoantibody positive individuals. Radiobinding assays (RBA) are widely used for ZnT8A measurement but have limited sustainability. We sought to develop a novel, high-performance, non-radioactive luciferase immunoprecipitation system (LIPS) assay to replace RBA.
View Article and Find Full Text PDFBackground: Saliva is easily obtainable non-invasively and potentially suitable for detecting both current and previous SARS-CoV-2 infection, but there is limited evidence on the utility of salivary antibody testing for community surveillance.
Methods: We established 6 ELISAs detecting IgA and IgG antibodies to whole SARS-CoV-2 spike protein, to its receptor binding domain region and to nucleocapsid protein in saliva. We evaluated diagnostic performance, and using paired saliva and serum samples, correlated mucosal and systemic antibody responses.
Front Endocrinol (Lausanne)
February 2023
Introduction: Autoimmune diabetes occurs more often in the first 2 years of life in children with Down syndrome (DS) compared with the general population. We previously observed increased frequencies of islet autoantibodies, including insulin autoantibodies (IAA), in children with DS. Assays for IAA using I-labelled insulin require competition to overcome cross reactivity with antibodies to the cow's milk protein, bovine serum albumin (BSA).
View Article and Find Full Text PDFAims/hypothesis: The Islet Autoantibody Standardization Program (IASP) aims to improve the performance of immunoassays measuring autoantibodies in type 1 diabetes and the concordance of results across laboratories. IASP organises international workshops distributing anonymised serum samples to participating laboratories and centralises the collection and analysis of results. In this report, we describe the results of assays measuring IAA submitted to the IASP 2018 and 2020 workshops.
View Article and Find Full Text PDFObjective: Proteomic profiling can identify useful biomarkers. Monozygotic (MZ) twins discordant for a condition represent an ideal test population. We aimed to investigate and validate proteomic profiling in twins with type 1 diabetes and in other well-characterized cohorts.
View Article and Find Full Text PDFLow-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269).
View Article and Find Full Text PDFAims: Some childhood type 1 diabetes cases are islet autoantibody negative at diagnosis. Potential explanations include misdiagnosis of genetic forms of diabetes or insufficient islet autoantibody testing. Many NHS laboratories offer combinations of three autoantibody markers.
View Article and Find Full Text PDFSevere COVID-19 appears rare in children. This is unexpected, especially in young infants, who are vulnerable to severe disease caused by other respiratory viruses. We evaluate convalescent immune responses in 4 infants under 3 months old with confirmed COVID-19 who presented with mild febrile illness, alongside their parents, and adult controls recovered from confirmed COVID-19.
View Article and Find Full Text PDFAims/hypothesis: We aimed to characterise the immunogenic background of insulin-dependent diabetes in a resource-poor rural African community. The study was initiated because reports of low autoantibody prevalence and phenotypic differences from European-origin cases with type 1 diabetes have raised doubts as to the role of autoimmunity in this and similar populations.
Methods: A study of consecutive, unselected cases of recently diagnosed, insulin-dependent diabetes (n = 236, ≤35 years) and control participants (n = 200) was carried out in the ethnic Amhara of rural North-West Ethiopia.
Aims/hypothesis: The aim of this study was to characterise islet autoantibody profiles and immune cell phenotypes in slow progressors to type 1 diabetes.
Methods: Immunological variables were compared across peripheral blood samples obtained from slow progressors to type 1 diabetes, individuals with newly diagnosed or long-standing type 1 diabetes, and healthy individuals. Polychromatic flow cytometry was used to characterise the phenotypic attributes of B and T cells.
Progression to clinical type 1 diabetes varies among children who develop β-cell autoantibodies. Differences in autoantibody patterns could relate to disease progression and etiology. Here we modeled complex longitudinal autoantibody profiles by using a novel wavelet-based algorithm.
View Article and Find Full Text PDFContext: Insulin autoimmune syndrome (IAS), spontaneous hyperinsulinemic hypoglycemia due to insulin-binding autoantibodies, may be difficult to distinguish from tumoral or other forms of hyperinsulinemic hypoglycemia, including surreptitious insulin administration. No standardized treatment regimen exists.
Objectives: To evaluate an analytic approach to IAS and responses to different treatments.
Objectives: To describe the characteristics of children and adults with incident type 1 diabetes in contemporary, multiethnic UK, focusing on differences between the islet autoantibody negative and positive.
Design: Observational cohort study.
Setting: 146 mainly secondary care centres across England and Wales.
Aims/hypothesis: Adult-onset type 1 diabetes, in which the 65 kDa isoform of GAD (GAD65) is a major autoantigen, has a broad clinical phenotype encompassing variable need for insulin therapy. This study aimed to evaluate whether autoantibodies against N-terminally truncated GAD65 more closely defined a type 1 diabetes phenotype associated with insulin therapy.
Methods: Of 1114 participants with adult-onset diabetes from the Action LADA (latent autoimmune diabetes in adults) study with sufficient sera, we selected those designated type 1 (n = 511) or type 2 diabetes (n = 603) and retested the samples in radiobinding assays for human full-length GAD65 autoantibodies (f-GADA) and N-terminally truncated (amino acids 96-585) GAD65 autoantibodies (t-GADA).
Aims/hypothesis: Multiple islet autoimmunity increases risk of diabetes, but not all individuals positive for two or more islet autoantibodies progress to disease within a decade. Major islet autoantibodies recognise insulin (IAA), GAD (GADA), islet antigen-2 (IA-2A) and zinc transporter 8 (ZnT8A). Here we describe the baseline characteristics of a unique cohort of 'slow progressors' (n = 132) who were positive for multiple islet autoantibodies (IAA, GADA, IA-2A or ZnT8A) but did not progress to diabetes within 10 years.
View Article and Find Full Text PDFAims: Insulin autoantibodies (IAA) are often the first marker of autoimmunity detected in children in the preclinical phase of type 1 diabetes (T1D). Currently, the vast majority of laboratories adopt the radiobinding micro-assay (RBA) for measuring IAA. Our aim was to replace RBA with a novel non-radioactive IAA Luciferase Immuno Precipitation System (LIPS) assay with improved performance.
View Article and Find Full Text PDFIntroduction: Type 1 diabetes is heterogeneous in its presentation and progression. Variations in clinical presentation between children and adults, and with ethnic group warrant further study in the UK to improve understanding of this heterogeneity. Early interventions to limit beta cell damage in type 1 diabetes are undergoing evaluation, but recruitment is challenging.
View Article and Find Full Text PDFAims/hypothesis: This study aimed to determine the frequency of residual beta cell function in individuals with long-standing type 1 diabetes who were recruited at diagnosis, and relate this to baseline and current islet autoantibody profile.
Methods: Two hour post-meal urine C-peptide:creatinine ratio (UCPCR) and islet autoantibodies were measured in samples collected from 144 participants (median age at diagnosis: 11.7 years; 47% male), a median of 23 years (range 12-29 years) after diagnosis.
Methods Mol Biol
October 2017
Epitope mapping is the process of experimentally identifying the binding sites, or "epitopes," of antibodies on their target antigens. Understanding the antibody-epitope interaction provides a basis for the rational design of potential preventative vaccines. Islet autoantibodies are currently the best available biomarkers for predicting future type 1 diabetes.
View Article and Find Full Text PDFType 1 diabetes (T1D) is a chronic inflammatory disease, caused by the immune mediated destruction of insulin-producing β-cells in the islets of the pancreas (Ziegler and Nepom, Immunity 32(4):468-478, 2010). Semiquantitative assays with high specificity and sensitivity for T1D are now available to detect antibodies to the four major islet autoantigens: glutamate decarboxylase (GADA) (Baekkeskov et al., Nature 347(6289):151-156, 1990), the protein tyrosine phosphatase-like proteins IA-2 (IA-2A) and IA-2β (Notkins et al.
View Article and Find Full Text PDFAims/hypothesis: The rate of progression from islet autoimmunity to clinical type 1 diabetes depends on the rate of beta cell destruction. The HLA-A*24 gene is associated with early diabetes onset, but previous studies have shown attenuated humoral responses to islet antigens in individuals with both recent and long-standing type 1 diabetes carrying HLA-A*24. We aimed to establish whether HLA-A*24 is also associated with attenuated humoral responses in individuals at high risk of type 1 diabetes.
View Article and Find Full Text PDFGAD autoantibodies (GADAs) identify individuals at increased risk of developing type 1 diabetes, but many people currently found to be GADA positive are unlikely to progress to clinical disease. More specific GADA assays are therefore needed. Recent international workshops have shown that the reactivity of sera from healthy donors varies according to assay type and indicated that the use of N-terminally truncated GAD65 radiolabels in GADA radiobinding assays is associated with higher specificity.
View Article and Find Full Text PDFGAD autoantibodies (GADAs) are sensitive markers of islet autoimmunity and type 1 diabetes. They form the basis of robust prediction models and are widely used for the recruitment of subjects at high risk of type 1 diabetes to prevention trials. However, GADAs are also found in many individuals at low risk of diabetes progression.
View Article and Find Full Text PDF