Publications by authors named "Alistair G Rust"

We have performed a functional in vivo mutagenesis screen to identify genes that, when altered, cooperate with a heterozygous Pten mutation to promote prostate tumour formation. Two genes, Bzw2 and Eif5a2, which have been implicated in the process of protein translation, were selected for further validation. Using prostate organoid models, we show that either Bzw2 downregulation or EIF5A2 overexpression leads to increased organoid size and in vivo prostate growth.

View Article and Find Full Text PDF

Unlabelled: Mutationally activated BRAF is detected in approximately 7% of human lung adenocarcinomas, with BRAFT1799A serving as a predictive biomarker for treatment of patients with FDA-approved inhibitors of BRAFV600E oncoprotein signaling. In genetically engineered mouse (GEM) models, expression of BRAFV600E in the lung epithelium initiates growth of benign lung tumors that, without additional genetic alterations, rarely progress to malignant lung adenocarcinoma. To identify genes that cooperate with BRAFV600E for malignant progression, we used Sleeping Beauty-mediated transposon mutagenesis, which dramatically accelerated the emergence of lethal lung cancers.

View Article and Find Full Text PDF

Adoptive T cell therapy with T cells expressing affinity-enhanced TCRs has shown promising results in phase 1/2 clinical trials for solid and hematological tumors. However, depth and durability of responses to adoptive T cell therapy can suffer from an inhibitory tumor microenvironment. A common immune-suppressive agent is TGF-β, which is secreted by tumor cells and cells recruited to the tumor.

View Article and Find Full Text PDF

Despite showing clinical activity in BRAF-mutant melanoma, the MEK inhibitor (MEKi) trametinib has failed to show clinical benefit in KRAS-mutant colorectal cancer. To identify mechanisms of resistance to MEKi, we employed a pharmacogenomic analysis of MEKi-sensitive versus MEKi-resistant colorectal cancer cell lines. Strikingly, interferon- and inflammatory-related gene sets were enriched in cell lines exhibiting intrinsic and acquired resistance to MEK inhibition.

View Article and Find Full Text PDF

ARID1A is a tumour suppressor gene that is frequently mutated in clear cell and endometrioid carcinomas of the ovary and endometrium and is an important clinical biomarker for novel treatment approaches for patients with ARID1A defects. However, the accuracy of ARID1A immunohistochemistry (IHC) as a surrogate for mutation status has not fully been established for patient stratification in clinical trials. Here we tested whether ARID1A IHC could reliably predict ARID1A mutations identified by next-generation sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • Genome-wide association studies (GWAS) have pinpointed around 100 locations in the genome linked to breast cancer risk, but understanding the specific genes or non-coding RNAs involved is key to grasping the disease mechanisms.
  • Using a technique called Capture Hi-C (CHi-C), researchers annotated 63 of these risk loci and identified 110 potential target genes at 33 loci.
  • They found that 22 of the target genes are linked to gene expression, 32 are connected to disease-specific survival rates, and 14 are mutated in breast cancer or other cancers, paving the way for better insights into breast cancer risk and prognosis.
View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1 Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells.

View Article and Find Full Text PDF

A central challenge in oncology is how to kill tumors containing heterogeneous cell populations defined by different combinations of mutated genes. Identifying these mutated genes and understanding how they cooperate requires single-cell analysis, but current single-cell analytic methods, such as PCR-based strategies or whole-exome sequencing, are biased, lack sequencing depth or are cost prohibitive. Transposon-based mutagenesis allows the identification of early cancer drivers, but current sequencing methods have limitations that prevent single-cell analysis.

View Article and Find Full Text PDF

O1 Regulation of genes by telomere length over long distances Jerry W. Shay O2 The microtubule destabilizer KIF2A regulates the postnatal establishment of neuronal circuits in addition to prenatal cell survival, cell migration, and axon elongation, and its loss leading to malformation of cortical development and severe epilepsy Noriko Homma, Ruyun Zhou, Muhammad Imran Naseer, Adeel G. Chaudhary, Mohammed Al-Qahtani, Nobutaka Hirokawa O3 Integration of metagenomics and metabolomics in gut microbiome research Maryam Goudarzi, Albert J.

View Article and Find Full Text PDF

Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)].

View Article and Find Full Text PDF

In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA.

View Article and Find Full Text PDF

Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes.

View Article and Find Full Text PDF

Familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) are inherited disorders associated with multiple colorectal adenomas that lead to a very high risk of colorectal cancer. The somatic mutations that drive adenoma development in these conditions have not been investigated comprehensively. In this study we performed analysis of paired colorectal adenoma and normal tissue DNA from individuals with FAP or MAP, sequencing 14 adenoma whole exomes (eight MAP, six FAP), 55 adenoma targeted exomes (33 MAP, 22 FAP) and germline DNA from each patient, and a further 63 adenomas by capillary sequencing (41 FAP, 22 MAP).

View Article and Find Full Text PDF

The introduction of highly selective ABL-tyrosine kinase inhibitors (TKIs) has revolutionized therapy for chronic myeloid leukemia (CML). However, TKIs are only efficacious in the chronic phase of the disease and effective therapies for TKI-refractory CML, or after progression to blast crisis (BC), are lacking. Whereas the chronic phase of CML is dependent on BCR-ABL, additional mutations are required for progression to BC.

View Article and Find Full Text PDF

Background: B-cell precursor acute lymphoblastic leukemia (B-ALL) is amongst the leading causes of childhood cancer-related mortality. Its most common chromosomal aberration is the ETV6-RUNX1 fusion gene, with ~25% of ETV6-RUNX1 patients also carrying PAX5 alterations.

Methods: We have recreated this mutation background by inter-crossing Etv6-RUNX1 (Etv6 (RUNX1-SB)) and Pax5(+/-) mice and performed an in vivo analysis to find driver genes using Sleeping Beauty transposon-mediated mutagenesis and also exome sequencing.

View Article and Find Full Text PDF

Alterations of genes encoding transcriptional regulators of lymphoid development are a hallmark of B-progenitor acute lymphoblastic leukemia (B-ALL) and most commonly involve PAX5, encoding the DNA-binding transcription factor paired-box 5. The majority of PAX5 alterations in ALL are heterozygous, and key PAX5 target genes are expressed in leukemic cells, suggesting that PAX5 may be a haploinsufficient tumor suppressor. To examine the role of PAX5 alterations in leukemogenesis, we performed mutagenesis screens of mice heterozygous for a loss-of-function Pax5 allele.

View Article and Find Full Text PDF

Although nearly half of human melanomas harbor oncogenic BRAF(V600E) mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in Braf(V600E) mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma.

View Article and Find Full Text PDF

BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors elicit a transient anti-tumor response in ∼ 80% of BRAF(V600)-mutant melanoma patients that almost uniformly precedes the emergence of resistance. Here we used a mouse model of melanoma in which melanocyte-specific expression of Braf(V618E) (analogous to the human BRAF(V600E) mutation) led to the development of skin hyperpigmentation and nevi, as well as melanoma formation with incomplete penetrance. Sleeping Beauty insertional mutagenesis in this model led to accelerated and fully penetrant melanomagenesis and synchronous tumor formation.

View Article and Find Full Text PDF

To provide a more comprehensive understanding of the genes and evolutionary forces driving colorectal cancer (CRC) progression, we performed Sleeping Beauty (SB) transposon mutagenesis screens in mice carrying sensitizing mutations in genes that act at different stages of tumor progression. This approach allowed us to identify a set of genes that appear to be highly relevant for CRC and to provide a better understanding of the evolutionary forces and systems properties of CRC. We also identified six genes driving malignant tumor progression and a new human CRC tumor-suppressor gene, ZNF292, that might also function in other types of cancer.

View Article and Find Full Text PDF

Next-generation sequencing of human tumours has refined our understanding of the mutational processes operative in cancer initiation and progression, yet major questions remain regarding the factors that induce driver mutations and the processes that shape mutation selection during tumorigenesis. Here we performed whole-exome sequencing on adenomas from three mouse models of non-small-cell lung cancer, which were induced either by exposure to carcinogens (methyl-nitrosourea (MNU) and urethane) or by genetic activation of Kras (Kras(LA2)). Although the MNU-induced tumours carried exactly the same initiating mutation in Kras as seen in the Kras(LA2) model (G12D), MNU tumours had an average of 192 non-synonymous, somatic single-nucleotide variants, compared with only six in tumours from the Kras(LA2) model.

View Article and Find Full Text PDF

The ability of retroviruses and transposons to insert their genetic material into host DNA makes them widely used tools in molecular biology, cancer research and gene therapy. However, these systems have biases that may strongly affect research outcomes. To address this issue, we generated very large datasets consisting of ~ 120,000 to ~ 180,000 unselected integrations in the mouse genome for the Sleeping Beauty (SB) and piggyBac (PB) transposons, and the Mouse Mammary Tumor Virus (MMTV).

View Article and Find Full Text PDF

Medulloblastoma is the most common pediatric brain tumor, and in ∼25% of cases, it is driven by aberrant activation of the Sonic Hedgehog (SHH) pathway in granule neuron precursor (GNP) cells. In this study, we identified novel medulloblastoma driver genes through a transposon mutagenesis screen in the developing brain of wild-type and Trp53 mutant mice. Twenty-six candidates were identified along with established driver genes such as Gli1 and Crebbp.

View Article and Find Full Text PDF

Retroviral insertional mutagenesis (RIM) is a powerful tool for cancer genomics that was combined in this study with deep sequencing (RIM/DS) to facilitate a comprehensive analysis of lymphoma progression. Transgenic mice expressing two potent collaborating oncogenes in the germ line (CD2-MYC, -Runx2) develop rapid onset tumours that can be accelerated and rendered polyclonal by neonatal Moloney murine leukaemia virus (MoMLV) infection. RIM/DS analysis of 28 polyclonal lymphomas identified 771 common insertion sites (CISs) defining a 'progression network' that encompassed a remarkably large fraction of known MoMLV target genes, with further strong indications of oncogenic selection above the background of MoMLV integration preference.

View Article and Find Full Text PDF