Publications by authors named "Alistair Forrest"

The Human Cell Atlas (HCA) is a global partnership "to create comprehensive reference maps of all human cells-the fundamental units of life - as a basis for both understanding human health and diagnosing, monitoring, and treating disease." ( https://www.humancellatlas.

View Article and Find Full Text PDF
Article Synopsis
  • Breast disseminated cancer cells (DCCs) can stay inactive in the lungs for a long time, but the reasons for this dormancy are not fully understood.
  • Research shows that alveolar macrophages in lung tissue help keep these cancer cells dormant by using a signaling molecule called TGF-β2.
  • When macrophages are depleted or the cancer cells lose their ability to respond to TGF-β2, this can reactivate the cancer cells, allowing them to grow and metastasize.
View Article and Find Full Text PDF

T cell-based immunotherapies are a promising therapeutic approach for multiple malignancies, but their efficacy is limited by tumor hypoxia arising from dysfunctional blood vessels. Here, we report that cell-intrinsic properties of a single vascular component, namely the pericyte, contribute to the control of tumor oxygenation, macrophage polarization, vessel inflammation, and T cell infiltration. Switching pericyte phenotype from a synthetic to a differentiated state reverses immune suppression and sensitizes tumors to adoptive T cell therapy, leading to regression of melanoma in mice.

View Article and Find Full Text PDF

Time-critical transcriptional events in the immune microenvironment are important for response to immune checkpoint blockade (ICB), yet these events are difficult to characterise and remain incompletely understood. Here, we present whole tumor RNA sequencing data in the context of treatment with ICB in murine models of AB1 mesothelioma and Renca renal cell cancer. We sequenced 144 bulk RNAseq samples from these two cancer types across 4 time points prior and after treatment with ICB.

View Article and Find Full Text PDF

Immune checkpoint therapy (ICT) causes durable tumour responses in a subgroup of patients, but it is not well known how T cell receptor beta (TCRβ) repertoire dynamics contribute to the therapeutic response. Using murine models that exclude variation in host genetics, environmental factors and tumour mutation burden, limiting variation between animals to naturally diverse TCRβ repertoires, we applied TCRseq, single cell RNAseq and flow cytometry to study TCRβ repertoire dynamics in ICT responders and non-responders. Increased oligoclonal expansion of TCRβ clonotypes was observed in responding tumours.

View Article and Find Full Text PDF

High-grade serous ovarian carcinoma (HGSOC) is genetically unstable and characterised by the presence of subclones with distinct genotypes. Intratumoural heterogeneity is linked to recurrence, chemotherapy resistance, and poor prognosis. Here, we use spatial transcriptomics to identify HGSOC subclones and study their association with infiltrating cell populations.

View Article and Find Full Text PDF

The incidence of hepatocellular carcinoma (HCC) is rapidly rising largely because of increased obesity leading to nonalcoholic steatohepatitis (NASH), a known HCC risk factor. There are no approved treatments to treat NASH. Here, we first used single-nucleus RNA sequencing to characterize a mouse model that mimics human NASH-driven HCC, the mouse fed a high-fat diet.

View Article and Find Full Text PDF

Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state.

View Article and Find Full Text PDF

Recent clinical successes have intensified interest in using adeno-associated virus (AAV) vectors for therapeutic gene delivery. The liver is a key clinical target, given its critical physiological functions and involvement in a wide range of genetic diseases. In the present study, we first investigated the validity of a liver xenograft mouse model repopulated with primary hepatocytes using single-nucleus RNA sequencing (sn-RNA-seq) by studying the transcriptomic profile of human hepatocytes pre- and post-engraftment.

View Article and Find Full Text PDF

Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions.

View Article and Find Full Text PDF

The biological determinants of the response to immune checkpoint blockade (ICB) in cancer remain incompletely understood. Little is known about dynamic biological events that underpin therapeutic efficacy due to the inability to frequently sample tumours in patients. Here, we map the transcriptional profiles of 144 responding and non-responding tumours within two mouse models at four time points during ICB.

View Article and Find Full Text PDF

In eukaryotes, capped RNAs include long transcripts such as messenger RNAs and long noncoding RNAs, as well as shorter transcripts such as spliceosomal RNAs, small nucleolar RNAs, and enhancer RNAs. Long capped transcripts can be profiled using cap analysis gene expression (CAGE) sequencing and other methods. Here, we describe a sequencing library preparation protocol for short capped RNAs, apply it to a differentiation time course of the human cell line THP-1, and systematically compare the landscape of short capped RNAs to that of long capped RNAs.

View Article and Find Full Text PDF

Hi-C is a genome-wide chromosome conformation capture technology that detects interactions between pairs of genomic regions and exploits higher order chromatin structures. Conceptually Hi-C data counts interaction frequencies between every position in the genome and every other position. Biologically functional interactions are expected to occur more frequently than transient background and artefactual interactions.

View Article and Find Full Text PDF

There are an estimated > 400 million people living with a rare disease globally, with genetic variants the cause of approximately 80% of cases. Next Generation Sequencing (NGS) rapidly identifies genetic variants however they are often of unknown significance. Low throughput functional validation in specialist laboratories is the current ad hoc approach for functional validation of genetic variants, which creating major bottlenecks in patient diagnosis.

View Article and Find Full Text PDF

Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis.

View Article and Find Full Text PDF

Background: CRISPR/Cas9 is an invaluable tool for studying cell biology and the development of molecular therapies. However, delivery of CRISPR/Cas9 components into some cell types remains a major hurdle. Primary human myoblasts are a valuable cell model for muscle studies, but are notoriously difficult to transfect.

View Article and Find Full Text PDF

Tumor heterogeneity is a major obstacle to the success of cancer treatment. An accurate understanding and recognition of tumor heterogeneity is critical in the clinical management of cancer patients. Here, we utilized single-cell RNA sequencing (scRNA-seq) to uncover the intra- and intertumoral heterogeneity of liver metastases from a patient with metastatic uveal melanoma.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental condition with substantial phenotypic and etiological heterogeneity. Although 10%-20% of ASD cases are attributable to copy number variation (CNV), causative genomic loci and constituent genes remain unclarified. We have developed SNATCNV, a tool that outperforms existing tools, to identify 47 recurrent ASD CNV regions from 19,663 cases and 6,479 controls documented in the AutDB database.

View Article and Find Full Text PDF

There has been much interest in the ability of regulatory T cells (Treg) to switch function , either as a result of genetic risk of disease or in response to environmental and metabolic cues. The relationship between levels of FOXP3 and functional fitness plays a significant part in this plasticity. There is an emerging role for Treg in tissue repair that may be less dependent on FOXP3, and the molecular mechanisms underpinning this are not fully understood.

View Article and Find Full Text PDF

Development of high throughput single-cell sequencing technologies has made it cost-effective to profile thousands of cells from diverse samples containing multiple cell types. To study how these different cell types work together, here we develop NATMI (Network Analysis Toolkit for Multicellular Interactions). NATMI uses connectomeDB2020 (a database of 2293 manually curated ligand-receptor pairs with literature support) to predict and visualise cell-to-cell communication networks from single-cell (or bulk) expression data.

View Article and Find Full Text PDF

The tumour stroma regulates nearly all stages of carcinogenesis. Stromal heterogeneity in human triple-negative breast cancers (TNBCs) remains poorly understood, limiting the development of stromal-targeted therapies. Single-cell RNA sequencing of five TNBCs revealed two cancer-associated fibroblast (CAF) and two perivascular-like (PVL) subpopulations.

View Article and Find Full Text PDF
Article Synopsis
  • Long noncoding RNAs (lncRNAs) make up most of transcripts in mammalian genomes, but their functions are still not well understood.
  • The FANTOM6 project systematically knocked down 285 lncRNAs in human dermal fibroblasts and analyzed changes in cell growth, shape, and gene expression using CAGE techniques.
  • This study provides a comprehensive lncRNA knockdown data set (over 1000 CAGE sequencing libraries) and reveals important findings about their roles and impact on various cellular pathways.
View Article and Find Full Text PDF

The recent coronavirus disease 2019 (COVID-19) pandemic has caused worldwide disruption which also extends to the arena of scientific meetings around the world. Here, we explore the lessons learned from moving two human genetics and genomics meetings quickly to an online format in early 2020. The tips presented herein may be useful not only for future virtual meetings but may also enrich future physical if not hybrid meetings once they resume.

View Article and Find Full Text PDF

Background: Single-cell RNA sequencing has been widely adopted to estimate the cellular composition of heterogeneous tissues and obtain transcriptional profiles of individual cells. Multiple approaches for optimal sample dissociation and storage of single cells have been proposed as have single-nuclei profiling methods. What has been lacking is a systematic comparison of their relative biases and benefits.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Alistair Forrest"

  • - Alistair Forrest's recent research focuses on understanding immune responses in cancer, particularly how various cellular interactions and microenvironments influence tumor progression and treatment efficacy.
  • - Notable findings include the role of lung-resident alveolar macrophages in regulating breast cancer metastasis, and the impact of pericyte phenotype switching in enhancing immunotherapy responses in vascularized tumors.
  • - Additionally, Forrest's work utilizes advanced techniques such as RNA sequencing and spatial transcriptomics to reveal critical insights into tumor microenvironments and pre-malignant liver conditions, enhancing the understanding of cancer development and potential therapeutic strategies.