Given the continued spread of human immunodeficiency virus (HIV)-1 worldwide, developing efficient vaccine strategies against HIV-1 is a key task. We tested the safety and immunogenicity of a multicomponent, cell-based vaccine that consisted of antigen-expressing apoptotic bodies with or without autologous dendritic cells (DCs). The vaccine strategy involved transfection of human 293T cells with codon-optimized DNA vectors expressing env of HIV1084i, a newly transmitted pediatric HIV-1 clade C strain; SHIV89.
View Article and Find Full Text PDFIn a primate model of postnatal virus transmission, we have previously shown that 1 h post-exposure prophylaxis (PEP) with a triple combination of neutralizing monoclonal antibodies (nmAbs) conferred sterilizing protection to neonatal macaques against oral challenge with pathogenic simian-human immunodeficiency virus (SHIV). Here, we show that nmAbs can also partially protect SHIV-exposed newborn macaques against infection or disease, when given as 12 or 24 h PEP, respectively. This work delineates the potential and the limits of passive immunoprophylaxis with nmAbs.
View Article and Find Full Text PDFWe investigated the ability of several human neutralizing monoclonal antibodies (nmAbs), originally raised against human immunodeficiency virus (HIV) clade B isolates, to neutralize primary clade A and D isolates as single agents and in combinations. All four primary HIV clade A isolates and five primary HIV clade D isolates tested were neutralized >99% by the quadruple combination of nmAbs IgG1b12, 2G12, 2F5, and 4E10. These mAbs recognize conserved epitopes on HIV-1 envelope (Env), resulting in strong cross-clade neutralization.
View Article and Find Full Text PDFDendritic cell (DC)-specific ICAM-3 grabbing nonintegrin (DC-SIGN) is a DC-specific antigen that plays an important role in the induction of primary immune responses as well as during HIV infection. In the present study, we analyzed the effect of binding of monoclonal antibody DCN46 to DC surface, expressed DC-SIGN on DC function. DC-SIGN antibody treated, immature DC were able to differentiate into mature DC and had the same capacity as untreated DC to induce primary and secondary immune responses.
View Article and Find Full Text PDF