Background: A variety of basic and applied research programs in plant biology require the accurate and reliable determination of plant tissue cold hardiness. Over the past 50 years, the electrolyte leakage method has emerged as a popular and practical method for quantifying the amount of damage inflicted on plant tissue by exposure to freezing temperatures. Numerous approaches for carrying out this method and analyzing the resultant data have emerged.
View Article and Find Full Text PDFGrapevine (Vitis spp.) buds must survive winter temperatures in order to resume growth when suitable conditions return in spring. They do so by developing cold hardiness through deep supercooling, but the mechanistic process of supercooling in buds remains largely unknown.
View Article and Find Full Text PDFBud dormancy and cold hardiness are critical adaptations for surviving winter cold stress for temperate perennial plant species. In grapevine, acquisition of cold hardiness requires dormancy induction in the early winter and careful maintenance of dormancy state throughout winter. With sufficient exposure to low, non-freezing temperatures (chilling requirement), grapevine buds transition between early (endodormant) and late winter (ecodormant) states.
View Article and Find Full Text PDFTemperatures from 2 to 8°C transiently induce quantitative resistance to powdery mildew in several host species (cold stress-induced disease resistance [SIDR]). Although cold SIDR events occur in vineyards worldwide an average of 14 to 21 times after budbreak of grapevine and can significantly delay grapevine powdery mildew () epidemics, its molecular basis was poorly understood. We characterized the biology underlying the cold SIDR phenotype-which peaks at 24 h post-cold (hpc) treatment and results in a 22 to 28% reduction in spore penetration success-through highly replicated ( = 8 to 10) RNA sequencing experiments.
View Article and Find Full Text PDFDormancy release, loss of cold hardiness and budbreak are critical aspects of the annual cycle of deciduous perennial plants. Molecular control of these processes is not fully understood, and genotypic variation may be important for climate adaptation. To gain greater understanding of these processes, single-node cuttings from wild (Vitis amurensis, V.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2019
Low-temperature stresses limit the sustainability and productivity of grapevines when early spring frosts damage young grapevine leaves. Spring conditions often expose grapevines to low, but not damaging, chilling temperatures and these temperatures have been shown to increase freeze resistance in other model systems. In this study, we examined whole-transcriptome gene expression patterns of young leaf tissue from cuttings of five different grapevine cultivars, exposed to chill and freeze shock, in order to understand the underlying transcriptional landscape associated with cold stress response.
View Article and Find Full Text PDF