Background: In addition to their well-documented ocular therapeutic effects, glucocorticoids (GCs) can cause sight-threatening side-effects including ocular hypertension presumably via morphological and biochemical changes in trabecular meshwork (TM) cells. In the present study, we directly compared the glucocorticoid receptor (GR) potency for dexamethasone (DEX), fluocinolone acetonide (FA) and triamcinolone acetonide (TA), examined the expression of known GRalpha and GRbeta isoforms, and used gene expression microarrays to compare the effects of DEX, FA, and TA on the complete transcriptome in two primary human TM cell lines.
Methods: GR binding affinity for DEX, FA, and TA was measured by a cell-free competitive radio-labeled GR binding assay.
Purpose: To characterize the effects of dexamethasone in human retinal pericytes (HRMPs), monocytes (THP-1), and retinal endothelial cells (HRECs) treated with high glucose, TNF-alpha, or IL-1beta.
Methods: HRMP and HREC phenotypes were verified by growth factor stimulation of intracellular calcium-ion mobilization. Glucocorticoid receptor phosphorylation was assessed with an anti-phospho-Ser(211) glucocorticoid receptor antibody.