Publications by authors named "Alissandra L Hillis"

Tyrosine phosphorylation of metabolic enzymes is an evolutionarily conserved posttranslational modification that facilitates rapid and reversible modulation of enzyme activity, localization, or function. Despite the high abundance of tyrosine phosphorylation events detected on metabolic enzymes in high-throughput mass spectrometry-based studies, functional characterization of tyrosine phosphorylation sites has been limited to a subset of enzymes. Since tyrosine phosphorylation is dysregulated across human diseases, including cancer, understanding the consequences of metabolic enzyme tyrosine phosphorylation events is critical for informing disease biology and therapeutic interventions.

View Article and Find Full Text PDF
Article Synopsis
  • Coordination of cellular signaling and adaptive metabolism is crucial for energy balance and homeostasis, with phosphorylation being a key regulatory mechanism for metabolic networks.
  • The study categorizes phosphorylation sites on metabolic enzymes, finding that many are located near functional areas and emphasizing ones on oxidoreductases, particularly phosphotyrosine sites linked to enzyme function.
  • Using a high fat diet model, the research uncovers sex-specific changes in metabolic regulation and identifies specific phosphotyrosine sites that predict metabolic responses, revealing how they influence enzyme activity and metabolic pathways.
View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is responsible for a disproportionate number of breast cancer patient deaths due to extensive molecular heterogeneity, high recurrence rates, and lack of targeted therapies. Dysregulation of the phosphoinositide 3-kinase (PI3K)/AKT pathway occurs in approximately 50% of TNBC patients. Here, we performed a genome-wide CRISPR/Cas9 screen with PI3Kα and AKT inhibitors to find targetable synthetic lethalities in TNBC.

View Article and Find Full Text PDF

Adenosine monophosphate-activated protein kinase (AMPK) activity is stimulated to promote metabolic adaptation upon energy stress. However, sustained metabolic stress may cause cell death. The mechanisms by which AMPK dictates cell death are not fully understood.

View Article and Find Full Text PDF

Predictive biomarkers can facilitate optimal patient selection for targeted cancer therapies. In this issue of Cancer Cell, Ros et al. show the utility of noninvasive metabolic imaging of labeled carbon transfer from pyruvate to lactate to detect early response and FOXM1-mediated resistance to PI3K inhibition in estrogen-receptor-positive breast cancer.

View Article and Find Full Text PDF

Background: While most cancer cells preferentially express the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2), PKM2 is dispensable for tumor development in several mouse cancer models. PKM2 is expressed in human pancreatic cancer, and there have been conflicting reports on the association of PKM2 expression and pancreatic cancer patient survival, but whether PKM2 is required for pancreatic cancer progression is unknown. To investigate the role of PKM2 in pancreatic cancer, we used a conditional allele to delete PKM2 in a mouse model of pancreatic ductal adenocarcinoma (PDAC).

View Article and Find Full Text PDF

Background: Cancer cells express the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2). PKM2 expression is not required for some cancers, and PKM2 loss can promote cancer progression; however, PKM2 has been reported to be essential in other tumor contexts, including a proposed non-metabolic role in β-catenin nuclear translocation. PKM2 is expressed in colon cancers where loss of the tumor suppressor results in β-catenin nuclear translocation and aberrant activation of the canonical Wnt signaling pathway.

View Article and Find Full Text PDF