The synthesis of two-dimensionally extended polycyclic heteroatomic molecules keeps attracting considerable attention. In particular, frameworks bearing planar cyclooctatetraenes (COT) moieties can display intriguing properties, including antiaromaticity. Here, we present an on-surface chemistry route to square-type porphyrin tetramers with a central COT ring, coexisting with other oligomers.
View Article and Find Full Text PDFPyrenes, as photoactive polycyclic aromatic hydrocarbons (PAHs), represent promising modules for the bottom-up assembly of functional nanostructures. Here, we introduce the synthesis of a family of pyrene derivatives peripherally functionalized with pyridin-4-ylethynyl termini and comprehensively characterize their self-assembly abilities on a smooth Ag(111) support by scanning tunneling microscopy. By deliberate selection of number and geometric positioning of the pyridyl-terminated substituents, two-dimensional arrays, one-dimensional coordination chains, and chiral, porous kagomé-type networks can be tailored.
View Article and Find Full Text PDFWe have examined the geometric and electronic structures of iron phthalocyanine assemblies on a Cu(111) surface at different sub- to mono-layer coverages and the changes induced by thermal annealing at temperatures between 250 and 320 °C by scanning tunneling microscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. The symmetry breaking observed in scanning tunneling microscopy images is found to be coverage dependent and to persist upon annealing. Further, we find that annealing to temperatures between 300 and 320 °C leads to both desorption of iron phthalocyanine molecules from the surface and their agglomeration.
View Article and Find Full Text PDFSelectivity in chemical reactions is a major objective in industrial processes to minimize spurious byproducts and to save scarce resources. In homogeneous catalysis the most important factor which determines selectivity is structural symmetry. However, a transfer of the symmetry concept to heterogeneous catalysis still requires a detailed comprehension of the underlying processes.
View Article and Find Full Text PDFThis work demonstrates that immobilising molecular catalysts on metal substrates can attenuate their reactivity. In particular, the reactivity towards molecular oxygen of both ruthenium tetraphenyl porphyrin (Ru-TPP) and its Ti analogue (Ti-TPP) on Ag(111) was studied as benchmark for the interaction strength of such metal-organic complexes with possible reactants. Here, Ru-TPP proves to be completely unreactive and Ti-TPP strongly reactive towards molecular oxygen; along with comparison to work in the literature, this suggests that studies into immobilised catalysts might find fruition in considering species traditionally seen as too strongly interacting.
View Article and Find Full Text PDFThe templated synthesis of porphyrin dimers, oligomers, and tapes has recently attracted considerable interest. Here, we introduce a clean, temperature-induced covalent dehydrogenative coupling mechanism between unsubstituted free-base porphine units yielding dimers, trimers, and larger oligomers directly on a Ag(111) support under ultrahigh-vacuum conditions. Our multitechnique approach, including scanning tunneling microscopy, near-edge X-ray absorption fine structure and photoelectron spectroscopy complemented by theoretical modeling, allows a comprehensive characterization of the resulting nanostructures and sheds light on the coupling mechanism.
View Article and Find Full Text PDFThe fabrication and control of coordination compounds or architectures at well-defined interfaces is a thriving research domain with promise for various research areas, including single-site catalysis, molecular magnetism, light-harvesting, and molecular rotors and machines. To date, such systems have been realized either by grafting or depositing prefabricated metal-organic complexes or by protocols combining molecular linkers and single metal atoms at the interface. Here we report a different pathway employing metal-organic chemical vapor deposition, as exemplified by the reaction of meso-tetraphenylporphyrin derivatives on atomistically clean Ag(111) with a metal carbonyl precursor (Ru3(CO)12) under vacuum conditions.
View Article and Find Full Text PDF