Publications by authors named "Alissa Rauwerdink"

Critical reagents have significant impact on ligand-binding assay performance. The critical reagents selected during method development should be well-evaluated, as the quality of these reagents will dictate performance of the assay over time. Critical reagents in ligand-binding assays are almost always produced using a biological system, so batch yield, purity and performance tend to vary greatly.

View Article and Find Full Text PDF

Catalytic promiscuity is a useful, but accidental, enzyme property, so finding catalytically promiscuous enzymes in nature is inefficient. Some ancestral enzymes were branch points in the evolution of new enzymes and are hypothesized to have been promiscuous. To test the hypothesis that ancestral enzymes were more promiscuous than their modern descendants, we reconstructed ancestral enzymes at four branch points in the divergence hydroxynitrile lyases (HNL's) from esterases ∼ 100 million years ago.

View Article and Find Full Text PDF

The means by which superfamilies of specialized enzymes arise by gene duplication and functional divergence are poorly understood. The escape from adaptive conflict hypothesis, which posits multiple copies of a gene encoding a primitive inefficient and highly promiscuous generalist ancestor, receives support from experiments showing that resurrected ancestral enzymes are indeed more substrate-promiscuous than their modern descendants. Here, we provide evidence in support of an alternative model, the innovation-amplification-divergence hypothesis, which posits a single-copied ancestor as efficient and specific as any modern enzyme.

View Article and Find Full Text PDF

Enzymes within a family often catalyze different reactions. In some cases, this variety stems from different catalytic machinery, but in other cases the machinery is identical; nevertheless, the enzymes catalyze different reactions. In this review, we examine the subset of α/β-hydrolase fold enzymes that contain the serine-histidine-aspartate catalytic triad.

View Article and Find Full Text PDF

Predicting substrates for enzymes of unknown function is a major postgenomic challenge. Substrate discovery, like inhibitor discovery, is constrained by our ability to explore chemotypes; it would be expanded by orders of magnitude if reactive sites could be probed with fragments rather than fully elaborated substrates, as is done for inhibitor discovery. To explore the feasibility of this approach, substrates of six enzymes from three different superfamilies were deconstructed into 41 overlapping fragments that were tested for activity or binding.

View Article and Find Full Text PDF