Publications by authors named "Alison Wirshing"

Article Synopsis
  • Abp140-GFP has been a key tool for imaging yeast actin cables for over two decades, but it shows inconsistent performance in different cellular compartments.
  • Researchers discovered that the ability of Abp140 to label actin structures asymmetrically depends on its F-actin binding capability and not on which formin assembles the cables.
  • A new probe, Lifeact-3xmNeonGreen, effectively stains actin structures uniformly in both yeast cell compartments, enhancing live imaging without affecting cell dynamics or growth, and potentially improving imaging in other organisms.
View Article and Find Full Text PDF

Aureobasidium pullulans is a ubiquitous polymorphic black yeast with industrial and agricultural applications. It has recently gained attention amongst cell biologists for its unconventional mode of proliferation in which multinucleate yeast cells make multiple buds within a single cell cycle. Here, we combine a chemical transformation method with genome-targeted homologous recombination to yield ∼60 transformants/μg of DNA in just 3 days.

View Article and Find Full Text PDF

Understanding how numerous actin-binding proteins (ABPs) work in concert to control the assembly, organization, and turnover of the actin cytoskeleton requires quantitative information about the levels of each component. Here, we measured the cellular concentrations of actin and the majority of the conserved ABPs in Saccharomyces cerevisiae, as well as the free (cytosolic) fractions of each ABP. The cellular concentration of actin is estimated to be 13.

View Article and Find Full Text PDF

How cells simultaneously assemble actin structures of distinct sizes, shapes, and filamentous architectures is still not well understood. Here, we used budding yeast as a model to investigate how competition for the barbed ends of actin filaments might influence this process. We found that while vertebrate capping protein (CapZ) and formins can simultaneously associate with barbed ends and catalyze each other's displacement, yeast capping protein (Cap1/2) poorly displaces both yeast and vertebrate formins.

View Article and Find Full Text PDF

Cellular actin arrays are often highly organized, with characteristic patterns critical to their in vivo functions, yet the mechanisms for establishing these higher order geometries remain poorly understood. In formin-polymerized actin cables are spatially organized and aligned along the mother-bud axis to facilitate polarized vesicle traffic. Here, we show that the bud neck-associated F-BAR protein Hof1, independent of its functions in regulating the formin Bnr1, binds to actin filaments and organizes actin cables in vivo.

View Article and Find Full Text PDF

Disruption to the contractility of cells, including smooth muscle cells of the cardiovascular system and myoepithelial cells of the glandular epithelium, contributes to the pathophysiology of contractile tissue diseases, including asthma, hypertension, and primary Sjögren's syndrome. Cell contractility is determined by myosin activity and actomyosin network organization and is mediated by hundreds of protein-protein interactions, many directly involving actin. Here we use a candidate RNA interference screen of more than 100 Caenorhabditis elegans genes with predicted actin-binding and regulatory domains to identify genes that contribute to the contractility of the somatic gonad.

View Article and Find Full Text PDF

We identify the Caenorhabditis elegans myosin light-chain kinase, MLCK-1, required for contraction of spermathecae. During contraction, MLCK-1 moves from the apical cell boundaries to the basal actomyosin bundles, where it stabilizes myosin downstream of calcium signaling. MLCK and ROCK act in distinct subsets of cells to coordinate the timing of contraction.

View Article and Find Full Text PDF

Stress fibers-contractile actomyosin bundles-are important for cellular force production and adaptation to physical stress and have been well studied within the context of cell migration. However, less is known about actomyosin bundle formation and organization in vivo and in specialized contractile cells, such as smooth muscle and myoepithelial cells. The spermatheca is a bag-like organ of 24 myoepithelial cells that houses the sperm and is the site of fertilization.

View Article and Find Full Text PDF