Following an outbreak of in Wales in July 2021 associated with sheep meat and offal, further genetically related cases were detected across the UK. Cases were UK residents with laboratory-confirmed in the same 5-single-nucleotide polymorphism (SNP) single-linkage cluster with specimen date between 01/08/2021-2031/12/2022. We described cases using routine (UK) and enhanced (Wales only) surveillance data.
View Article and Find Full Text PDFPrisons are susceptible to outbreaks. Control measures focusing on isolation and cohorting negatively affect wellbeing. We present an outbreak of coronavirus disease 2019 (COVID-19) in a large male prison in Wales, UK, October 2020 to April 2021, and discuss control measures.
View Article and Find Full Text PDFThere is a need for innovative methods to investigate outbreaks of food-borne infection linked to produce with a complex distribution network. The investigation of a large outbreak of O157 PT34 infection in the United Kingdom in 2016 indicated that catering venues associated with multiple cases had used salad leaves sourced from one supplier. Our aim was to investigate whether catering venues linked to cases were more likely to have used salad leaves from this supplier.
View Article and Find Full Text PDFAnalysis of whole genome sequencing data uncovered a previously undetected outbreak of Salmonella Enteritidis that had been on-going for four years. Cases were resident in all countries of the United Kingdom and 40% of the cases were aged less than 11 years old. Initial investigations revealed that 30% of cases reported exposure to pet snakes.
View Article and Find Full Text PDFBackground: Giardia is a leading but neglected cause of infectious gastroenteritis worldwide and is treatable. There is a substantial burden of undetected Giardia in the UK and for every one case of Giardia reported to national surveillance there are 14 cases in the community. We aimed to ascertain the prevalence of, and risk factors associated with secondary household Giardia infections to assess the burden of infection and inform control measures.
View Article and Find Full Text PDFBackground: New approaches are urgently required to address increasing rates of gonorrhoea and the emergence and global spread of antibiotic-resistant Neisseria gonorrhoeae. We used whole-genome sequencing to study transmission and track resistance in N gonorrhoeae isolates.
Methods: We did whole-genome sequencing of isolates obtained from samples collected from patients attending sexual health services in Brighton, UK, between Jan 1, 2011, and March 9, 2015.
Successful investigation of national outbreaks of communicable disease relies on rapid identification of the source. Case-control methodologies are commonly used to achieve this. We assessed control selection methods used in recently published case-control studies for methodological and resource issues to determine if a standard approach could be identified.
View Article and Find Full Text PDFCovariation in the structural composition of the gut microbiome and the spectroscopically derived metabolic phenotype (metabotype) of a rodent model for obesity were investigated using a range of multivariate statistical tools. Urine and plasma samples from three strains of 10-week-old male Zucker rats (obese (fa/fa, n=8), lean (fa/-, n=8) and lean (-/-, n=8)) were characterized via high-resolution 1H NMR spectroscopy, and in parallel, the fecal microbial composition was investigated using fluorescence in situ hydridization (FISH) and denaturing gradient gel electrophoresis (DGGE) methods. All three Zucker strains had different relative abundances of the dominant members of their intestinal microbiota (FISH), with the novel observation of a Halomonas and a Sphingomonas species being present in the (fa/fa) obese strain on the basis of DGGE data.
View Article and Find Full Text PDFThe kinetics of the reaction between [S(2)MoS(2)Cu(SC(6)H(4)R-4)](2-)(R = MeO, H, Cl or NO(2)) and CN(-) to form [S(2)MoS(2)CuCN](2-) have been studied in MeCN using stopped-flow spectrophotometry. In all cases, the rate law is of the form, Rate ={k+k(2)(R)[CN(-)]}[S(2)MoS(2)Cu(SC(6)H(4)R-4)(2-)]. It is proposed that both k and k correspond to associative substitution mechanisms.
View Article and Find Full Text PDF