Publications by authors named "Alison S H Ryder"

The synergistic use of (organo)photoredox catalysts with hydrogen-atom transfer (HAT) cocatalysts has emerged as a powerful strategy for innate C(sp)-H bond functionalization, particularly for C-H bonds α- to nitrogen. Azide ion (N) was recently identified as an effective HAT catalyst for the challenging α-C-H alkylation of unprotected, primary alkylamines, in combination with dicyanoarene photocatalysts such as 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN). Here, time-resolved transient absorption spectroscopy over sub-picosecond to microsecond timescales provides kinetic and mechanistic details of the photoredox catalytic cycle in acetonitrile solution.

View Article and Find Full Text PDF

We report the use of optofluidic hollow-core photonic crystal fibres as microreactors for Stern-Volmer (SV) luminescence quenching analysis of visible-light photocatalytic reactions. This technology enables measurements on nanolitre volumes and paves the way for automated SV analyses in continuous flow that minimise catalyst and reagent usage. The method is showcased using a recently developed photoredox-catalysed α-C-H alkylation reaction of unprotected primary alkylamines.

View Article and Find Full Text PDF

A practical, catalytic entry to α,α,α-trisubstituted (α-tertiary) primary amines by C-H functionalisation has long been recognised as a critical gap in the synthetic toolbox. We report a simple and scalable solution to this problem that does not require any in situ protection of the amino group and proceeds with 100 % atom-economy. Our strategy, which uses an organic photocatalyst in combination with azide ion as a hydrogen atom transfer (HAT) catalyst, provides a direct synthesis of α-tertiary amines, or their corresponding γ-lactams.

View Article and Find Full Text PDF