Publications by authors named "Alison R Swearingen"

Histone modifications are associated with regulation of gene expression that controls a vast array of biological processes. Often, these associations are drawn by correlating the genomic location of a particular histone modification with gene expression or phenotype; however, establishing a causal relationship between histone marks and biological processes remains challenging. Consequently, there is a strong need for experimental approaches to directly manipulate histone modifications.

View Article and Find Full Text PDF

Understanding how cells remember previous mechanical environments to influence their fate, or mechanical memory, informs the design of biomaterials and therapies in medicine. Current regeneration therapies, such as cartilage regeneration procedures, require 2D cell expansion processes to achieve large cell populations critical for the repair of damaged tissues. However, the limit of mechanical priming for cartilage regeneration procedures before inducing long-term mechanical memory following expansion processes is unknown, and mechanisms defining how physical environments influence the therapeutic potential of cells remain poorly understood.

View Article and Find Full Text PDF

Pathological cardiac hypertrophy is associated with increased morbidity and mortality. Understanding the mechanisms whereby pathological cardiac growth can be reversed could be of therapeutic value. Here, we show that pathways leading to regression of pathological cardiac hypertrophy are strongly dependent on the hypertrophic trigger and are significantly modified by sex.

View Article and Find Full Text PDF

In cardiovascular tissues, changes in the mechanical properties of the extracellular matrix are associated with cellular de-differentiation and with subsequent functional declines. However, the underlying mechanoreceptive mechanisms are largely unclear. Here, by generating high-resolution, full-field strain maps of cardiomyocyte nuclei during contraction in vitro, complemented with evidence from tissues from patients with cardiomyopathy and from mice with reduced cardiac performance, we show that cardiomyocytes establish a distinct nuclear organization during maturation, characterized by the reorganization of H3K9me3-marked chromatin towards the nuclear border.

View Article and Find Full Text PDF

Lipin 1 is a bifunctional protein that is a transcriptional regulator and has phosphatidic acid (PA) phosphohydrolase activity, which dephosphorylates PA to generate diacylglycerol. Human lipin 1 mutations lead to episodic rhabdomyolysis, and some affected patients exhibit cardiac abnormalities, including exercise-induced cardiac dysfunction and cardiac triglyceride accumulation. Furthermore, lipin 1 expression is deactivated in failing heart, but the effects of lipin 1 deactivation in myocardium are incompletely understood.

View Article and Find Full Text PDF

As the obesity epidemic worsens, the prevalence of maternal obesity is expected to rise. Both high-fat and high-sucrose diets are known to promote maternal obesity and several studies have elucidated the molecular influence of high-fat feeding on female reproduction. However, to date, the molecular impact of a high-sucrose diet on maternal obesity remains to be investigated.

View Article and Find Full Text PDF