Background: Previous research has suggested that spatiotemporal step parameters differ between settings; however, it remains unclear how different settings influence walking balance control.
Research Question: How do settings and sex influence walking balance control during walking at different speeds for young adults?
Methods: Forty-two adults (21 male (23 ± 4 years), 21 female (24 ± 5 years)) completed overground walking trials in four settings: laboratory (10 m), hallway, indoor open, and outdoor pathway (all 20 m) at three self-selected speeds (slow, preferred, fast) following verbal instructions. Participants wore 17 inertial sensors (Xsens Awinda, Movella, Henderson, NV) to capture total body kinematics.
Front Sports Act Living
March 2024
Background: Understanding the factors that influence walking is important as quantitative walking assessments have potential to inform health risk assessments. Wearable technology innovation has enabled quantitative walking assessments to be conducted in different settings. Understanding how different settings influence quantitative walking performance is required to better utilize the health-related potential of quantitative walking assessments.
View Article and Find Full Text PDFAthletes regularly face the possibility of failing to meet expectations in training and competition, and it is essential that they are equipped with strategies to facilitate coping after receiving performance feedback. Self-compassion is a potential resource to help athletes manage the various setbacks that arise in sport over and above other psychological resources. The primary purpose of this research was to explore how athletes respond to objective biomechanical feedback given after a performance.
View Article and Find Full Text PDFThe attentional capacity required of haptic modalities while obstacle crossing may limit their effectiveness. Therefore, this study examined the attentional demands of haptic modalities during obstacle crossing. Nineteen healthy young adults walked across a 10 m laboratory floor within two modality blocks using either: 1) light touch on a railing, or 2) pulling haptic anchors.
View Article and Find Full Text PDFBackground: Up to 83 % of individuals with incomplete spinal cord injury (iSCI) experience ≥ 1 fall/year. Individuals with iSCI employ more cautious walking strategies than able-bodied (AB) individuals during normal walking. Whether individuals with iSCI can use proactive balance strategies to adapt to expected slip perturbations/reduce slip severity while walking has not been previously assessed.
View Article and Find Full Text PDFBackground: Training balance through exercise is an effective strategy to reduce falls in community-dwelling older adults. Evidence-based fall prevention exercise recommendations have been proposed, specifying that exercise programs should: (1) provide a high challenge to balance, (2) be offered for a least three hours per week, (3) be provided on an ongoing basis. Community exercise programs have the potential to deliver effective fall prevention exercise; however, current design characteristics and whether they include the recommendations is not known.
View Article and Find Full Text PDFObjective: To evaluate test-retest reliability, agreement, and convergent validity of the Lean-and-Release test for the assessment of reactive stepping among individuals with incomplete spinal cord injury or disease (iSCI/D).
Design: Multi-center cross-sectional multiple test design.
Setting: SCI/D rehabilitation hospital and biomechanics laboratory.
Study Design: Prospective cross-sectional study OBJECTIVES: To investigate the effect of adding haptic input during walking in individuals with incomplete spinal cord injury (iSCI).
Setting: Research laboratory.
Methods: Participants with iSCI and age- and sex-matched able-bodied (AB) individuals walked normally (SCI n = 18, AB n = 17) and in tandem (SCI n = 12, AB n = 17).
Adding haptic input may improve balance control and help prevent falls in older adults. This study examined the effects of added haptic input via light touch on a railing while walking. Participants (N = 53, 75.
View Article and Find Full Text PDFThis study examined the effect of descriptive norm messaging information on the relationship between haptic input and balance control. Participants were randomly assigned to either a message group where they balanced with haptic input after receiving a descriptive norm message about the positive effect of haptic input or a control group. Findings from an analysis of covariance revealed a significant difference between the two groups.
View Article and Find Full Text PDFBackground: Effective fall prevention exercise for community-dwelling older adults requires (i) challenging balance exercise, (ii) offered at least 3 hrs/ week, and (iii) on an ongoing basis, to reduce falls. Community exercise programs are a potential implementation strategy for fall prevention exercise; however, the extent to which they address balance and include effective fall prevention exercise is unknown. Study objectives were to describe program delivery, exercise design, and assessment characteristics of older adult community exercise programs in Winnipeg, Canada; determine if they included effective fall prevention exercise; determine the balance challenge and components of postural control addressed in the most- and least-frequently reported exercises.
View Article and Find Full Text PDFBackground: Adding haptic input by lightly touching a railing or using haptic anchors may improve walking balance control. Typical use of the railing(s) and haptic anchors requires the use of one and two arms in an extended position, respectively. It is unclear whether it is arm configuration and/or the number of arms used or the addition of sensory input that affects walking balance control.
View Article and Find Full Text PDFHoffmann (H-) reflex amplitudes in plantar flexor soleus muscle are modulated by posture, yet dorsiflexor tibialis anterior (TA) H-reflex parameters have sparingly been studied. The purpose was to investigate modulation of the TA H-reflex when postural demands are increased from sitting to standing. In this study, data from 18 participants (Age: 25 ± 4 years, Height: 170.
View Article and Find Full Text PDFStudy Design: A prospective, observational study.
Objectives: To assess the attentional demands of using haptic modalities during walking using a multi-task paradigm in young, healthy adults.
Setting: Biomechanics of Balance and Movement (BBAM) Lab, University of Saskatchewan.
Context/objective: The study objectives were to evaluate the test-retest reliability, convergent validity, and discriminative validity of the Activities-specific Balance Confidence (ABC) scale in individuals with incomplete spinal cord injury (iSCI).
Design: Prospective, cross-sectional study.
Setting: Laboratory.
Walking is an important component of daily life requiring sensorimotor integration to be successful. Adding haptic input via light touch or anchors has been shown to improve standing balance; however, the effect of adding haptic input on walking is not clear. This scoping review systematically summarizes the current evidence regarding the addition of haptic input on walking in adults.
View Article and Find Full Text PDFThere are different ways to add haptic input during walking which may affect walking balance. This study compared the use of two different haptic tools (rigid railing and haptic anchors) and investigated whether any effects on walking were the result of the added sensory input and/or the posture generated when using those tools. Data from 28 young healthy adults were collected using the Mobility Lab inertial sensor system (APDM, Oregon, USA).
View Article and Find Full Text PDFAlthough inertial sensor systems are becoming a popular tool for gait analysis in both healthy and pathological adult populations, there are currently no data on the validity of these systems for use with children. The purpose of this study was to validate spatiotemporal data from a commercial inertial sensor system (MobilityLab) in typically-developing children. Data from 10 children (5 males; 3.
View Article and Find Full Text PDFBackground: The knee abduction moment in a weight-bearing limb is an important risk factor of conditions such as patellofemoral pain and knee osteoarthritis. Excessive pelvic drop in single-leg stance can increase the knee abduction moment. The gluteus medius muscle is crucial to prevent pelvic drop and must be activated in anticipation of the transition from double-leg to single-leg stance.
View Article and Find Full Text PDFFunctional tests, such as the timed-up-and-go (TUG), are routinely used to screen for mobility issues and fall risk. While the TUG is easy to administer and evaluate, its single time-to-completion outcome may not discriminate between different mobility challenges. Wearable sensors provide an opportunity to collect a variety of additional variables during clinical tests.
View Article and Find Full Text PDFAn unexpected slip during gait termination results in a generalised slip response designed to regain stability and prevent a fall. With knowledge of and experience with a slippery surface, locomotor behaviour adapts to proactively diminish the effect of the slip and improve the reactive control during the slip. Our purpose was to examine the organisation of the adaptation to a slippery surface during gait termination.
View Article and Find Full Text PDFThis study investigated how Parkinson's disease (PD) affects the ability to switch from locomotion to gait termination (GT) during planned and cued GT and examined the effect of PD on the integration of a reactive, balance maintenance strategy into voluntary GT. After a series of stops on a stable surface, eight participants with and 10 without PD stopped on a surface, which slid quickly and unexpectedly forward mimicking a slippery surface. PD caused instability during the completely voluntary nonslippery stops (P = 0.
View Article and Find Full Text PDF