Publications by authors named "Alison R Marklein"

California's dairy sector accounts for ∼50% of anthropogenic CH emissions in the state's greenhouse gas (GHG) emission inventory. Although California dairy facilities' location and herd size vary over time, atmospheric inverse modeling studies rely on decade-old facility-scale geospatial information. For the first time, we apply artificial intelligence (AI) to aerial imagery to estimate dairy CH emissions from California's San Joaquin Valley (SJV), a region with ∼90% of the state's dairy population.

View Article and Find Full Text PDF

Rising levels of atmospheric CO2 have been implicated in changes in the nitrogen (N) and phosphorus (P) content of terrestrial vegetation; however, questions remain over the role of C, N and P interactions in driving plant nutrient stoichiometry, particularly whether N and P additions alter vegetation responses to CO2 enrichment singly. Here we use meta-analysis of 46 published studies to investigate the response of plant N and P to elevated CO2 alone and in combination with nutrient (N and P) additions across temperate vs. tropical biomes.

View Article and Find Full Text PDF

Nitrogen (N) and phosphorus (P) availability regulate plant productivity throughout the terrestrial biosphere, influencing the patterns and magnitude of net primary production (NPP) by land plants both now and into the future. These nutrients enter ecosystems via geologic and atmospheric pathways and are recycled to varying degrees through the plant-soil-microbe system via organic matter decay processes. However, the proportion of global NPP that can be attributed to new nutrient inputs versus recycled nutrients is unresolved, as are the large-scale patterns of variation across terrestrial ecosystems.

View Article and Find Full Text PDF

• Biologically essential elements--especially nitrogen (N) and phosphorus (P)--constrain plant growth and microbial functioning; however, human activities are drastically altering the magnitude and pattern of such nutrient limitations on land. Here we examine interactions between N and P cycles of P mineralizing enzyme activities (phosphatase enzymes) across a wide variety of terrestrial biomes. • We synthesized results from 34 separate studies and used meta-analysis to evaluate phosphatase activity with N, P, or N×P fertilization.

View Article and Find Full Text PDF