Publications by authors named "Alison Olcott Marshall"

The inability to unambiguously distinguish the biogenicity of microfossil-like structures in the ancient rock record is a fundamental predicament facing Archean paleobiologists and astrobiologists. Therefore, novel methods for discriminating biological from nonbiological chemistries of microfossil-like structures are of the utmost importance in the search for evidence of early life on Earth. This, too, is important for the search for life on Mars by in situ analyses via rovers or sample return missions for future analysis here on Earth.

View Article and Find Full Text PDF

Raman spectroscopy can provide chemical information about organic and inorganic substances quickly and nondestructively with little to no sample preparation, thus making it an ideal instrument for Mars rover missions. The ESA ExoMars planetary mission scheduled for launch in 2018 will contain a miniaturized Raman spectrometer (RLS) as part of the Pasteur payload operating with a continuous wave (CW) laser emitting at 532 nm. In addition, NASA is independently developing two miniaturized Raman spectrometers for the upcoming Mars 2020 rover mission, one of which is a remote (stand-off) Raman spectrometer that uses a pulse-gated 532 nm excitation system (SuperCam).

View Article and Find Full Text PDF

One of the major exploration targets for current and future Mars missions are lithofacies suggestive of biotic activity. Although such lithofacies are not confirmation of biotic activity, they provide a way to identify samples for further analyses. To test the efficacy of this approach, we identified carbonate samples from the Eocene Green River Formation as "microbial" or "non-microbial" based on the macroscale morphology of their laminations.

View Article and Find Full Text PDF

Knowledge and understanding of the martian environment has advanced greatly over the past two decades, beginning with NASA's return to the surface of Mars with the Pathfinder mission and its rover Sojourner in 1997 and continuing today with data being returned by the Curiosity rover. Reduced carbon, however, is yet to be detected on the martian surface, despite its abundance in meteorites originating from the planet. If carbon is detected on Mars, it could be a remnant of extinct life, although an abiotic source is much more likely.

View Article and Find Full Text PDF

The search for sp(2)-bonded carbonaceous material is one of the major life detection strategies of the astrobiological exploration programmes of National Aeronautics and Space Administration and European Space Agency (ESA). The ESA ExoMars rover scheduled for launch in 2018 will include a Raman spectrometer with the goal of detecting sp(2)-bonded carbonaceous material as potential evidence of ancient life. However, sp(2)-bonded carbonaceous material will yield the same Raman spectra of well-developed G and D bands whether they are synthesized biologically or non-biologically.

View Article and Find Full Text PDF

Initially, Raman spectroscopy was a specialized technique used by vibrational spectroscopists; however, due to rapid advancements in instrumentation and imaging techniques over the last few decades, Raman spectrometers are widely available at many institutions, allowing Raman spectroscopy to become a widespread analytical tool in mineralogy and other geological sciences. Hyperspectral imaging, in particular, has become popular due to the fact that Raman spectroscopy can quickly delineate crystallographic and compositional differences in 2-D and 3-D at the micron scale. Although this rapid growth of applications to the Earth sciences has provided great insight across the geological sciences, the ease of application as the instruments become increasingly automated combined with nonspecialists using this techique has resulted in the propagation of errors and misunderstandings throughout the field.

View Article and Find Full Text PDF

Raman spectrometers are being miniaturized for future life-detection missions on Mars. Field-portable Raman spectrometers, which have similar spectral parameters to the instruments being developed for Mars rovers, have been used to examine extant biosignatures, but they have not yet been used to examine ancient biosignatures. Here, a portable Raman spectrometer was used to analyze an Ordovician stromatolite at the outcrop, revealing both its mineralogy and the presence of sp² carbonaceous material.

View Article and Find Full Text PDF

Discovery of a fossil (30-35 million-year-old) urolith from Early Oligocene deposits in northeastern Colorado provides the earliest evidence for the antiquity of bladder stones. These are spherical objects with a layered phosphatic structure and a hollow center. Each layer is composed of parallel crystals oriented perpendicular to the surface.

View Article and Find Full Text PDF

While the Apex chert is one of the most well-studied Archean deposits on Earth, its formation history is still not fully understood. Here, we present Raman spectroscopic data collected on the carbonaceous material (CM) present within the matrix of the Apex chert. These data, collected within a paragenetic framework, reveal two different phases of CM deposited within separate phases of quartz matrix.

View Article and Find Full Text PDF

Over the last few decades Raman spectroscopy has been increasingly applied as an analytical tool in geoscience research. Raman spectroscopy is a powerful tool for geologists as it is non-destructive, requires little to no sample preparation, and can be undertaken in situ on various irreplaceable geological samples. Also, this technique is useful in the identification of minerals and geo-organic material.

View Article and Find Full Text PDF

Recently, carotenoids have received much attention as target compounds for astrobiological prospecting principally because they are a group of molecules that display unique diagnostic Raman spectra that can be assigned to organic material of unequivocal biological origin. However, no work has been performed on assessing the potential of Raman spectroscopic detection of carotenoids from fossilized microbes. Here, we report the first Raman spectra acquired from 'perhydro' derivatives of beta-carotene and lycopene formed by hydrogenation of the polyene chain during diagenesis, resulting in much less specific fossil hydrocarbons such as beta-carotane and lycopane, respectively.

View Article and Find Full Text PDF