Environmental enteric dysfunction (EED) is an inflammatory syndrome postulated to contribute to stunted child growth and to be associated with intestinal dysbiosis and nutrient malabsorption. However, the small intestinal contributions to EED remain poorly understood. This study aimed to assess changes in the proximal and distal intestinal microbiota in the context of stunting and EED and to test for a causal role of these bacterial isolates in the underlying pathophysiology.
View Article and Find Full Text PDFEnvironmental enteric dysfunction (EED) is an elusive, inflammatory syndrome of the small intestine thought to be associated with enterocyte loss and gut leakiness and lead to stunted child growth. To date, the gold standard for diagnosis is small intestine biopsy followed by histology. Several putative biomarkers for EED have been proposed and are widely used in the field.
View Article and Find Full Text PDFBMC Public Health
July 2022
Background: Anaemia occurs in children when the haemoglobin level in the blood is less than the normal (11 g/dL), the consequence is the decrease of oxygen quantity in the tissues. It is a prevalent public health problem in many low-income countries, including Madagascar, and data on risk factors are lacking. We used existing data collected within the pathophysiology of environmental enteric dysfunction (EED) in Madagascar and the Central African Republic project (AFRIBIOTA project) conducted in underprivileged neighbourhoods of Antananarivo to investigate the factors associated with anaemia in children 24 to 59 months of age.
View Article and Find Full Text PDFBackground: Child undernutrition is a global health issue that is associated with poor sanitation and an altered intestinal microbiota. Immunoglobulin (Ig) A mediates host-microbial homeostasis in the intestine, and acutely undernourished children have been shown to have altered IgA recognition of the fecal microbiota. We sought to determine whether chronic undernutrition (stunting) or intestinal inflammation were associated with antibody recognition of the microbiota using two geographically distinct populations from the Afribiota project.
View Article and Find Full Text PDF