Publications by authors named "Alison Mckelvey"

Dysregulated cytokine signalling is a hallmark of inflammatory bowel diseases. Inflammatory responses of the colon are regulated by the suppressor of cytokine signalling (SOCS) proteins. SOCS1 is a key member of this family, and its function is critical in maintaining an appropriate inflammatory response through the JAK/STAT signalling pathway.

View Article and Find Full Text PDF

Mitochondrial quality control is mediated by the PTEN-induced kinase 1 (PINK1), a cytoprotective protein that is dysregulated in inflammatory lung injury and neurodegenerative diseases. Here, we show that a ubiquitin E3 ligase receptor component, FBXO7, targets PINK1 for its cellular disposal. FBXO7, by mediating PINK1 ubiquitylation and degradation, was sufficient to induce mitochondrial injury and inflammation in experimental pneumonia.

View Article and Find Full Text PDF

Dysregulated proinflammatory cytokine release has been implicated in the pathogenesis of several life-threatening acute lung illnesses such as pneumonia, sepsis, and acute respiratory distress syndrome. Suppressors of cytokine signaling proteins, particularly SOCS2, have recently been described as antiinflammatory mediators. However, the regulation of SOCS2 protein has not been described.

View Article and Find Full Text PDF

As an α-chemokine receptor specific for stromal-derived-factor-1 (SDF-1, also called CXCL12), C-X-C chemokine receptor type 4 (CXCR4) plays a vital role in chemotactically attracting lymphocytes during inflammation. CXCR4 also regulates HIV infection due to its role as one of the chemokine coreceptors for HIV entry into CD4 T cells. Chemokine receptors and their signaling pathways have been shown to be regulated by the process of ubiquitination, a posttranslational modification, guided by ubiquitin E3 ligases, which covalently links ubiquitin chains to lysine residues within target substrates.

View Article and Find Full Text PDF

The receptor for advanced glycation end products (RAGE) is a highly expressed cell membrane receptor serving to anchor lung epithelia to matrix components, and it also amplifies inflammatory signaling during acute lung injury. However, mechanisms that regulate its protein concentrations in cells remain largely unknown. Here we show that RAGE exhibits an extended life span in lung epithelia ( 6 h), is monoubiquitinated at K374, and is degraded in lysosomes.

View Article and Find Full Text PDF

Inflammasomes regulate innate immune responses by facilitating maturation of inflammatory cytokines, interleukin (IL)-1β and IL-18. NACHT, LRR and PYD domains-containing protein 7 (NALP7) is one inflammasome constituent, but little is known about its cellular handling. Here we show a mechanism for NALP7 protein stabilization and activation of the inflammasome by Toll-like receptor (TLR) agonism with bacterial lipopolysaccharide (LPS) and the synthetic acylated lipopeptide Pam3CSK4.

View Article and Find Full Text PDF

Toll-like receptor 2 (TLR2) is a pattern recognition receptor that recognizes many types of PAMPs that originate from gram-positive bacteria. Here we describe a novel mechanism regulating TLR2 protein expression and subsequent cytokine release through the ubiquitination and degradation of the receptor in response to ligand stimulation. We show a new mechanism in which an uncharacterized RING finger E3 ligase, PPP1R11, directly ubiquitinates TLR2 both in vitro and in vivo, which leads to TLR2 degradation and disruption of the signaling cascade.

View Article and Find Full Text PDF

The E3 small ubiquitin-like modifier (SUMO) protein ligase protein inhibitor of activated STAT 4 (PIAS4) is a pivotal protein in regulating the TGFβ pathway. In this study, we discovered a new protein isoform encoded by KIAA0317, termed fibrosis-inducing E3 ligase 1 (FIEL1), which potently stimulates the TGFβ signaling pathway through the site-specific ubiquitination of PIAS4. FIEL1 targets PIAS4 using a double locking mechanism that is facilitated by the kinases PKCζ and GSK3β.

View Article and Find Full Text PDF

Invading pathogens may trigger overactivation of the innate immune system, which results in the release of large amounts of proinflammatory cytokines (cytokine storm) and leads to the development of pulmonary edema, multiorgan failure, and shock. PIAS1 is a multifunctional and potent anti-inflammatory protein that negatively regulates several key inflammatory pathways such as Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and nuclear factor κB (NF-κB). We discovered a ubiquitin E3 ligase, HECTD2, which ubiquitinated and mediated the degradation of PIAS1, thus increasing inflammation in an experimental pneumonia model.

View Article and Find Full Text PDF

Cyclic adenosine monophosphate (cAMP) is a crucial intracellular second messenger molecule that converts extracellular molecules to intracellular signal transduction pathways generating cell- and stimulus-specific effects. Importantly, specific phosphodiesterase (PDE) subtypes control the amplitude and duration of cAMP-induced physiological processes and are therefore a prominent pharmacological target currently used in a variety of fields. Here we tested the extracts from traditional Chinese medicine, Forsythia suspense seeds, which have been used for more than 2000 years to relieve respiratory symptoms.

View Article and Find Full Text PDF

Acute lung injury (ALI) is linked to mitochondrial injury, resulting in impaired cellular oxygen utilization; however, it is unknown how these events are linked on the molecular level. Cardiolipin, a mitochondrial-specific lipid, is generated by cardiolipin synthase (CLS1). Here, we show that S.

View Article and Find Full Text PDF