Publications by authors named "Alison McCaig"

Purpose: The treatment of chronic lymphocytic leukemia (CLL) has been revolutionized by targeted therapies that either inhibit proliferation (ibrutinib) or reactivate apoptosis (venetoclax). Both significantly improve survival in CLL and replace chemoimmunotherapy for many patients. However, individually, they rarely lead to eradication of measurable residual disease (MRD) and usually are taken indefinitely or until progression.

View Article and Find Full Text PDF

Purpose: To determine whether inhibition of mTOR kinase-mediated signaling represents a valid therapeutic approach for chronic lymphocytic leukemia (CLL).

Experimental Design: Stratification of mTOR activity was carried out in patients with primary CLL samples and an aggressive CLL-like mouse model. The potency of dual mTOR inhibitor AZD8055 to induce apoptosis in primary CLL cells was assessed in the presence/absence of B-cell receptor (BCR) ligation.

View Article and Find Full Text PDF

Overwhelming evidence identifies the microenvironment as a critical factor in the development and progression of chronic lymphocytic leukemia, underlining the importance of developing suitable translational models to study the pathogenesis of the disease. We previously established that stable expression of kinase dead protein kinase C alpha in hematopoietic progenitor cells resulted in the development of a chronic lymphocytic leukemia-like disease in mice. Here we demonstrate that this chronic lymphocytic leukemia model resembles the more aggressive subset of chronic lymphocytic leukemia, expressing predominantly unmutated immunoglobulin heavy chain genes, with upregulated tyrosine kinase ZAP-70 expression and elevated ERK-MAPK-mTor signaling, resulting in enhanced proliferation and increased tumor load in lymphoid organs.

View Article and Find Full Text PDF

Purpose: Chronic lymphocytic leukemia (CLL) is currently incurable with standard chemotherapeutic agents, highlighting the need for novel therapies. Overcoming proliferative and cytoprotective signals generated within the microenvironment of lymphoid organs is essential for limiting CLL progression and ultimately developing a cure.

Experimental Design: We assessed the potency of cyclin-dependent kinase (CDK) inhibitor CR8, a roscovitine analog, to induce apoptosis in primary CLL from distinct prognostic subsets using flow cytometry-based assays.

View Article and Find Full Text PDF

Chemokines and their ligands play a critical role in enabling chronic lymphocytic leukaemia (CLL) cells access to protective microenvironmental niches within tissues, ultimately resulting in chemoresistance and relapse: disruption of these signaling pathways has become a novel therapeutic approach in CLL. The tyrosine kinase inhibitor dasatinib inhibits migration of several cell lines from solid-organ tumours, but effects on CLL cells have not been reported. We studied the effect of clinically achievable concentrations of dasatinib on signaling induced by the chemokine CXCL12 through its' receptor CXCR4, which is highly expressed on CLL cells.

View Article and Find Full Text PDF

As antigenic stimulation of the B cell antigen receptor (BCR) is key to chronic lymphocytic leukaemia (CLL) pathogenesis, targeting dysregulated kinases involved in BCR signalling is an attractive therapeutic approach. We studied the effects of the Src/c-Abl tyrosine kinase inhibitor dasatinib on BCR signal transduction in CLL cells. Treatment of CLL cells with 100 nmol/l dasatinib induced apoptosis by an average reduction in viability of 33·7% at 48 h, with dasatinib sensitivity correlating with inhibition of Syk(Y348) phosphorylation.

View Article and Find Full Text PDF

Death-associated protein kinase (DAPK) is a pro-apoptotic serine/threonine protein kinase that is dysregulated in a wide variety of cancers. The mechanism by which this occurs has largely been attributed to promoter hypermethylation, which results in gene silencing. However, recent studies indicate that DAPK expression can be detected in some cancers, but its function is still repressed, suggesting that DAPK activity can be subverted at a post-translational level in cancer cells.

View Article and Find Full Text PDF

Purpose: To investigate the expression and function of neuregulin (NRG) isoforms in ovarian cancer cell lines and tumor samples.

Experimental Design: Expression of NRG-1alpha and NRG-1beta proteins were detected by immunohistochemistry and mRNA by RT-PCR. erbB receptor levels and downstream signaling proteins were measured by Western blot analysis.

View Article and Find Full Text PDF