Publications by authors named "Alison M Shakarian"

Lipases have been implicated to be of importance in the life cycle development, virulence, and transmission of a variety of parasitic organisms. Potential functions include the acquisition of host resources for energy metabolism and as simple building blocks for the synthesis of complex parasite lipids important for membrane remodeling and structural purposes. Using a molecular approach, we identified and characterized the structure of an LdLip3-lipase gene from the primitive trypanosomatid pathogen of humans, Leishmania donovani.

View Article and Find Full Text PDF

Chitinases have been implicated to be of importance in the life cycle development and transmission of a variety of parasitic organisms. Using a molecular approach, we identified and characterized the structure of a single copy LmexCht1-chitinase gene from the primitive trypanosomatid pathogen of humans, Leishmania mexicana. The LmexCht1 encodes an approximately 50 kDa protein, with well conserved substrate binding and catalytic domains characteristic of members of the chitinase-18 protein family.

View Article and Find Full Text PDF

Recently, we identified and characterized the genes encoding several distinct members of the histidine-acid phosphatase enzyme family from Leishmania donovani, a primitive protozoan pathogen of humans. These included genes encoding the heavily phosphorylated/glycosylated, tartrate-sensitive, secretory acid phosphatases (Ld SAcP-1 and Ld SAcP-2) and the unique, tartrate-resistant, externally-oriented, surface membrane-bound acid phosphatase (Ld MAcP) of this parasite. It had been previously suggested that these enzymes may play essential roles in the growth, development and survival of this organism.

View Article and Find Full Text PDF

The primitive trypanosomatid pathogen of humans, Leishmania donovani, constitutively expresses a unique externally oriented, tartrate-resistant, acid phosphatase on its surface membrane. This is of interest because these organisms are obligate intracellular protozoan parasites that reside and multiply within the hydrolytic milieu of mammalian macrophage phago-lysosomes. Here we report the identification of the gene encoding this novel L.

View Article and Find Full Text PDF