Cogn Affect Behav Neurosci
October 2020
Humans routinely integrate affective information from multiple sources. For example, we rarely interpret an emotional facial expression devoid of context. In this paper, we describe the neural correlates of an affective computation that involves integrating multiple sources, by leveraging the ambiguity and subtle feature-based valence signals found in surprised faces.
View Article and Find Full Text PDFThe events we experience day to day can be described in terms of their affective quality: some are rewarding, others are upsetting, and still others are inconsequential. These natural distinctions reflect an underlying representational structure used to classify affective quality. In affective psychology, many experiments model this representational structure with two dimensions, using either the dimensions of valence and arousal, or alternatively, the dimensions of positivity and negativity.
View Article and Find Full Text PDFAlthough backward masking is a powerful experimental tool in mitigating visual awareness of facial expressions of emotion, ~20% of participants consistently report being resistant to its effects. In our previous studies, we excluded these participants from analysis as we focused on neural data in individuals who were subjectively unaware of backward-masked facial features that were presented for a brief period of time (e.g.
View Article and Find Full Text PDFHuman amygdala function has been traditionally associated with processing the affective valence (negative vs positive) of an emotionally charged event, especially those that signal fear or threat. However, this account of human amygdala function can be explained by alternative views, which posit that the amygdala might be tuned to either (1) general emotional arousal (activation vs deactivation) or (2) specific emotion categories (fear vs happy). Delineating the pure effects of valence independent of arousal or emotion category is a challenging task, given that these variables naturally covary under many circumstances.
View Article and Find Full Text PDFAlthough it is possible to observe when another person is having an emotional moment, we also derive information about the affective states of others from what they tell us they are feeling. In an effort to distill the complexity of affective experience, psychologists routinely focus on a simplified subset of subjective rating scales (i.e.
View Article and Find Full Text PDFOversensitivity to uncertain future threat is usefully conceptualized as intolerance of uncertainty (IU). Neuroimaging studies of IU to date have largely focused on its relationship with brain function, but few studies have documented the association between IU and the quantitative properties of brain structure. Here, we examined potential gray and white-matter brain structural correlates of IU from 61 healthy participants.
View Article and Find Full Text PDFAnxiety impacts the quality of everyday life and may facilitate the development of affective disorders, possibly through concurrent alterations in neural circuitry. Findings from multimodal neuroimaging studies suggest that trait-anxious individuals may have a reduced capacity for efficient communication between the amygdala and the ventral prefrontal cortex (vPFC). A diffusion-weighted imaging protocol with 61 directions was used to identify lateral and medial amygdala-vPFC white matter pathways.
View Article and Find Full Text PDFValence is a principal dimension by which we understand emotional experiences, but oftentimes events are not easily classified as strictly positive or negative. Inevitably, individuals vary in how they tend to interpret the valence of ambiguous situations. Surprised facial expressions are one example of a well-defined, ambiguous affective event that induces trait-like differences in the propensity to form a positive or negative interpretation.
View Article and Find Full Text PDF