Publications by authors named "Alison M Lanzi"

Structured nanoassemblies are biomimetic structures that are enabling applications from nanomedicine to catalysis. One approach to achieve these spatially organized architectures is utilizing amphiphilic diblock copolymers with one or two macromolecular backbones that self-assemble in solution. To date, the impact of alternating backbone architectures on self-assembly and drug delivery is still an area of active research limited by the strategies used to synthesize these multiblock polymers.

View Article and Find Full Text PDF

Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels.

View Article and Find Full Text PDF