Publications by authors named "Alison M Cheung"

Cellular profiling with multiplexed immunofluorescence (MxIF) images can contribute to a more accurate patient stratification for immunotherapy. Accurate cell segmentation of the MxIF images is an essential step. We propose a deep learning pipeline to train a Mask R-CNN model (deep network) for cell segmentation using nuclear (DAPI) and membrane (NaKATPase) stained images.

View Article and Find Full Text PDF

Background: The extent of cellular heterogeneity in breast cancer could have potential impact on diagnosis and long-term outcome. However, pathology evaluation is limited to biomarker immunohistochemical staining and morphology of the bulk cancer. Inter-cellular heterogeneity of biomarkers is not usually assessed.

View Article and Find Full Text PDF
Article Synopsis
  • A multiplex assay was developed to detect 8 breast cancer biomarkers on a single tissue slide using staining and imaging technologies from General Electric.
  • An unexpected membranous staining of Ki-67 was found to be an artifact resulting from the binding of two antibodies in the multiplexing process.
  • By blocking with rabbit serum, researchers established a successful method to multiplex the biomarkers without any antibody cross-reactivity.
View Article and Find Full Text PDF

High-frequency microultrasound imaging of tumor progression in mice enables noninvasive anatomic and functional imaging at excellent spatial and temporal resolution, although microultrasonography alone does not offer molecular scale data. In the current study, we investigated the use of microbubble ultrasound contrast agents bearing targeting ligands specific for molecular markers of tumor angiogenesis using high-frequency microultrasound imaging. A xenograft tumor model in the mouse was used to image vascular endothelial growth factor receptor 2 (VEGFR-2) expression with microbubbles conjugated to an anti-VEGFR-2 monoclonal antibody or an isotype control.

View Article and Find Full Text PDF

Blockade of vascular endothelial growth factor (VEGF) binding to its receptors on endothelial cells has been shown preclinically to induce tumour growth inhibition. Using ultrasound biomicroscopy (UBM) or micro-ultrasound imaging and micro-computed tomography (micro-CT) analysis, we have examined the effects of DC101, a highly specific vascular endothelial growth factor receptor-2 (VEGFR-2)-targeting antibody, in inducing growth inhibition and functional vascular changes in established melanoma (MeWo) xenografts in mice. Postprocessing of UBM imaging loops for speckle variance was introduced to estimate the level of functional blood flow in tumours.

View Article and Find Full Text PDF

This study investigates 'interframe' clutter filtering with a high frequency (HF) flow imaging system with the objective of improving the performance of HF microvascular imaging at high frame rates. An interframe filter exploits the correlation of tissue signals on the time scale of the frame rate and is, therefore, insensitive to tissue spectral broadening induced by sweeping a single element transducer over a region of tissue. In vitro experiments were conducted in a tissue-mimicking flow phantom over a range of mean flow velocities (0.

View Article and Find Full Text PDF

A unique feature of the haematopoietic system is its self-renewal ability while maintaining a stable number of pluripotent haematopoietic stem cells (HSCs). Recently, two publications by Yilmaz and colleagues and Zhang and colleagues demonstrated that the loss of the tumour suppressor phosphatase and tensin homolog (PTEN) in mice disturbed the maintenance of quiescent HSCs and promoted leukemogenesis. Mammalian target of rapamycin (mTOR) inhibition with rapamycin distinctly rescued HSC development and depleted leukemic stem cells.

View Article and Find Full Text PDF

The contribution of bone marrow-derived circulating endothelial progenitor cells (CEPs) to tumor angiogenesis has been controversial, primarily because of their low numbers in blood vessels of untreated tumors. We show that treatment of tumor-bearing mice with vascular disrupting agents (VDAs) leads to an acute mobilization of CEPs, which home to the viable tumor rim that characteristically remains after such therapy. Disruption of this CEP spike by antiangiogenic drugs or by genetic manipulation resulted in marked reductions in tumor rim size and blood flow as well as enhanced VDA antitumor activity.

View Article and Find Full Text PDF

Because antiangiogenic therapies inhibit the growth of new tumor-associated blood vessels, as well as prune newly formed vasculature, they would be expected to reduce the supply of oxygen and thus increase tumor hypoxia. However, it is not clear if antiangiogenic treatments lead only to consistent and sustained increases in hypoxia, or transient decreases in tumor hypoxia along with periods of increased hypoxia. We undertook a detailed analysis of an orthotopically transplanted human breast carcinoma (MDA-MB-231) over a 3-week treatment period using DC101, an anti-vascular endothelial growth factor receptor 2 antibody.

View Article and Find Full Text PDF

We reported the use of high-frequency ultrasound biomicroscopy (UBM) in the quantitative analysis of early tumor growth in mice bearing melanoma xenografts in a noninvasive longitudinal assay. Initially, measurements of tumor width, depth and length were obtained using on-screen UBM calipers in real time and tumor volume was calculated with the standard ellipsoid formula w d l pi/6. We were able to detect initiating minute tumor nodules, with the lower limit of detection at approximately 0.

View Article and Find Full Text PDF

Brca2 is an important tumor suppressor associated with susceptibility to breast cancer. Although increasing evidence indicates that the primary function of Brca2 is to facilitate the repair of DNA damage via the homologous recombination pathway, how Brca2 prevents breast cancer is largely unknown. To study the role of Brca2 specifically in mammary epithelium development, we crossed mice bearing the conditionally deficient allele Brca2(flox9-10) to mouse mammary tumor virus- or whey acidic protein-Cre transgenic lines.

View Article and Find Full Text PDF

BRCA2 is a breast cancer susceptibility gene of which the product is thought to be involved in monitoring genome integrity and cell cycle progression. Brca2-null mice have a defect in embryonic cellular proliferation and die in utero. Here we report the generation of T-cell lineage-specific Brca2-deficient (tBrca2(-/-)) mice using the Cre-loxP system.

View Article and Find Full Text PDF