There have been frequent reports of more than one strain of the nitrogen-fixing symbiont, Frankia, in the same root nodule of plants in the genus Alnus, but quantitative assessments of their relative contributions have not been made to date. Neither has the diversity of other microbes, having potential functional roles in symbiosis, been systematically evaluated. Alnus rubra root nodule microbiota were studied using Illumina short read sequencing and kmer-based read classification.
View Article and Find Full Text PDFPlant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis.
View Article and Find Full Text PDFMicrobiol Resour Announc
October 2021
We report the genome sequence of sp. strain ArI3, recovered as a single contig from one run of the Oxford Nanopore Technologies (ONT) MinION instrument. The genome has a G+C content of 72%, is 7,541,222 bp long, and contains 5,427 predicted protein-coding genes.
View Article and Find Full Text PDFGenus is comprised primarily of nitrogen-fixing actinobacteria that form root nodule symbioses with a group of hosts known as the actinorhizal plants. These plants are evolutionarily closely related to the legumes that are nodulated by the rhizobia. Both host groups utilize homologs of nodulation genes for root-nodule symbiosis, derived from common plant ancestors.
View Article and Find Full Text PDFFrankia strains induce the formation of nitrogen-fixing nodules on roots of actinorhizal plants. Phylogenetically, Frankia strains can be grouped in four clusters. The earliest divergent cluster, cluster-2, has a particularly wide host range.
View Article and Find Full Text PDFThe early Frankia-Alnus symbiotic molecular exchanges were analyzed in detail by protein and RNA omics. For this, Frankia cells were placed in the presence of Alnus roots but separated by a dialysis membrane for 64 h. The bacterial cells were then harvested and analyzed by high-throughput proteomics and transcriptomics (RNA-seq).
View Article and Find Full Text PDFTwo types of nitrogen-fixing root nodule symbioses are known, rhizobial and actinorhizal symbioses. The latter involve plants of three orders, Fagales, Rosales, and Cucurbitales. To understand the diversity of plant symbiotic adaptation, we compared the nodule transcriptomes of (Datiscaceae, Cucurbitales) and (Rhamnaceae, Rosales); both species are nodulated by members of the uncultured clade, cluster II.
View Article and Find Full Text PDFPlants within the Nitrogen-fixing Clade (NFC) of Angiosperms form root nodule symbioses with nitrogen-fixing bacteria. Actinorhizal plants (in Cucurbitales, Fagales, Rosales) form symbioses with the actinobacteria while legumes (Fabales) form symbioses with proteobacterial rhizobia. Flavonoids, secondary metabolites of the phenylpropanoid pathway, have been shown to play major roles in legume root nodule symbioses: as signal molecules that in turn trigger rhizobial nodulation initiation signals and acting as polar auxin transport inhibitors, enabling a key step in nodule organogenesis.
View Article and Find Full Text PDFRoot nodule symbiosis (RNS) is a symbiotic interaction established between angiosperm hosts and nitrogen-fixing soil bacteria in specialized organs called root nodules. The host plants provide photosynthate and the microsymbionts supply fixed nitrogen. The origin of RNS represents a major evolutionary event in the angiosperms, and understanding the genetic underpinnings of this event is of major economic and agricultural importance.
View Article and Find Full Text PDFPlants are associated with a complex microbiota that contributes to nutrient acquisition, plant growth, and plant defense. Nitrogen-fixing microbial associations are efficient and well characterized in legumes but are limited in cereals, including maize. We studied an indigenous landrace of maize grown in nitrogen-depleted soils in the Sierra Mixe region of Oaxaca, Mexico.
View Article and Find Full Text PDFThe root nodule symbiosis of plants with nitrogen-fixing bacteria affects global nitrogen cycles and food production but is restricted to a subset of genera within a single clade of flowering plants. To explore the genetic basis for this scattered occurrence, we sequenced the genomes of 10 plant species covering the diversity of nodule morphotypes, bacterial symbionts, and infection strategies. In a genome-wide comparative analysis of a total of 37 plant species, we discovered signatures of multiple independent loss-of-function events in the indispensable symbiotic regulator in 10 of 13 genomes of nonnodulating species within this clade.
View Article and Find Full Text PDFThe genus Frankia comprises a group of nitrogen-fixing actinobacteria that form root-nodule symbioses with perennial dicotyledonous plants in the nitrogen-fixing clade. These bacteria have been characterized phylogenetically and grouped into four clusters (clusters 1-4). Cluster 2 contains mostly uncultured strains that induce nodules on species of the genera Datisca (Datiscaceae), Coriaria (Coriariaceae), Ceanothus (Rhamnaceae) and several genera in the family Rosaceae (Cercocarpus, Chamaebatia, Dryas, Purshia), all of which except members of the genus Coriaria are present within the California Floristic Province (CFP) or neighbouring areas of western North America.
View Article and Find Full Text PDFBackground: Identifying orthologous genes is an initial step required for phylogenetics, and it is also a common strategy employed in functional genetics to find candidates for functionally equivalent genes across multiple species. At the same time, in silico orthology prediction tools often require large computational resources only available on computing clusters. Here we present OrthoReD, an open-source orthology prediction tool with accuracy comparable to published tools that requires only a desktop computer.
View Article and Find Full Text PDFUnlabelled: The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host.
View Article and Find Full Text PDFBackground: The ability to establish root nodule symbioses is restricted to four different plant orders. Soil actinobacteria of the genus Frankia can establish a symbiotic relationship with a diverse group of plants within eight different families from three different orders, the Cucurbitales, Fagales and Rosales. Phylogenetically, Frankia strains can be divided into four clusters, three of which (I, II, III) contain symbiotic strains.
View Article and Find Full Text PDFFrankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
November 2014
The phylogeny of the class Actinobacteria remains controversial, essentially because it is very sensitive to the choice of dataset and phylogenetic methods. We used a test proposed recently, based on complete genome data, which chooses among candidate species phylogenies based on the number of lateral gene transfers (LGT) needed to explain the diversity of histories among gene trees for a set of genomes. We used 100 completely sequenced genomes representing 35 families and 17 orders of the class Actinobacteria and evaluated eight different hypotheses for their phylogeny, including one based on a concatenate of 54 conserved proteins present in single copy in all these genomes, trees based on 16S and 23S rRNA gene sequences or their concatenation, and a tree based on the concatenation of MLSA genes (encoding AtpI, GyrA, FtsZ, SecA and DnaK).
View Article and Find Full Text PDFMembers of the noncultured clade of Frankia enter into root nodule symbioses with actinorhizal species from the orders Cucurbitales and Rosales. We report the genome sequence of a member of this clade originally from Pakistan but obtained from root nodules of the American plant Datisca glomerata without isolation in culture.
View Article and Find Full Text PDFNitrogen-fixing root nodules are plant organs specialised for symbiotic transfer of nitrogen and carbon between microsymbiont and host. The organisation of nitrogen assimilation, storage and transport processes is partitioned at the subcellular and tissue levels, in distinctive patterns depending on the symbiotic partners. In this review, recent advances in understanding of actinorhizal nodule nitrogen assimilation are presented.
View Article and Find Full Text PDFIn recent years, our understanding of the plant side of actinorhizal symbioses has evolved rapidly. No homologues of the common nod genes from rhizobia were found in the three Frankia genomes published so far, which suggested that Nod factor-like molecules would not be used in the infection of actinorhizal plants by Frankia. However, work on chimeric transgenic plants indicated that Frankia Nod factor equivalents signal via the same transduction pathway as rhizobial Nod factors.
View Article and Find Full Text PDFActinorhizal plants are a group of taxonomically diverse angiosperms with remarkable economic and ecological significance. Most actinorhizal plants are able to thrive under extreme adverse environmental conditions as well as to fix atmospheric nitrogen due to their capacity to establish root nodule symbioses with Frankia bacteria. This special issue of Functional Plant Biology is dedicated to actinorhizal plant research, covering part of the work presented at the 16th International Meeting onFrankia and Actinorhizal Plants, held on 5-8 September 2010, in Oporto, Portugal.
View Article and Find Full Text PDFPrevious studies on biological pretreatment of switchgrass by solid-state fermentation with Acidothermus cellulolyticus 11B have shown that inhibitory compounds prevent growth on untreated switchgrass. A. cellulolyticus was grown in liquid medium containing cellobiose with phenolic monomers added to determine if the phenolic compounds are one possible source of inhibition.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2010
We cloned and purified the major family 10 xylanase (Xyn10A) from Acidothermus cellulolyticus 11B. Xyn10A was active on oat spelt and birchwood xylans between 60°C and 100°C and between pH 4 and pH 8. The optimal activity was at 90°C and pH 6; specific activity and K(m) for oat spelt xylan were 350 μmol xylose produced min⁻¹ mg of protein⁻¹ and 0.
View Article and Find Full Text PDFGrowth of Acidothermus cellulolyticus in solid-state fermentation and its required growth conditions were investigated in this study. Extraction of switchgrass was required for growth. Under the experimental conditions, extraction ratio had the most significant effect on the growth of A.
View Article and Find Full Text PDFWe present here the complete 2.4-Mb genome of the cellulolytic actinobacterial thermophile Acidothermus cellulolyticus 11B. New secreted glycoside hydrolases and carbohydrate esterases were identified in the genome, revealing a diverse biomass-degrading enzyme repertoire far greater than previously characterized and elevating the industrial value of this organism.
View Article and Find Full Text PDF