Publications by authors named "Alison Lui"

Single-walled carbon nanotubes (SWCNTs) are desirable nanoparticles for sensing biological analytes due to their photostability and intrinsic near-infrared fluorescence. Previous strategies for generating SWCNT nanosensors have leveraged nonspecific adsorption of sensing modalities to the hydrophobic SWCNT surface that often require engineering new molecular recognition elements. An attractive alternate strategy is to leverage pre-existing molecular recognition of proteins for analyte specificity, yet attaching proteins to SWCNT for nanosensor generation remains challenging.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) are desirable nanoparticles for sensing biological analytes due to their photostability and intrinsic near-infrared fluorescence. Previous strategies for generating SWCNT nanosensors have leveraged nonspecific adsorption of sensing modalities to the hydrophobic SWCNT surface that often require engineering new molecular recognition elements. An attractive alternate strategy is to leverage pre-existing molecular recognition of proteins for analyte specificity, yet attaching proteins to SWCNT for nanosensor generation remains challenging.

View Article and Find Full Text PDF

Noncovalent adsorption of DNA on nanoparticles has led to their widespread implementation as gene delivery tools and optical probes. Yet, the behavior and stability of DNA-nanoparticle complexes once applied in biomolecule-rich, in vivo environments remains unpredictable, whereby biocompatibility testing usually occurs in serum. Here, we demonstrate time-resolved measurements of exchange dynamics between solution-phase and adsorbed corona-phase DNA and protein biomolecules on single-walled carbon nanotubes (SWCNTs).

View Article and Find Full Text PDF

Studying the single cell protein secretome offers the opportunity to understand how a phenotypically heterogeneous population of individual cells contribute to ensemble physiology and signaling. Polarized secretion events such as neurotransmitter release and cytokine signaling necessitates spatiotemporal information to elucidate structure-function relationships. Polymer functionalized single-walled carbon nanotube protein sensor arrays allow microscopic imaging of secreted protein footprints and enable the study of the spatiotemporal heterogeneity of protein secretion at the single-cell level.

View Article and Find Full Text PDF