The bacterial second messenger c-di-GMP is used in many species to control essential processes that allow the organism to adapt to its environment. The c-di-GMP riboswitch (GEMM) is an important downstream target in this signaling pathway and alters gene expression in response to changing concentrations of c-di-GMP. The riboswitch selectively recognizes its second messenger ligand primarily through contacts with two critical nucleotides.
View Article and Find Full Text PDFMUTYH-associated polyposis (MAP) is the only inherited colorectal cancer syndrome that is associated with inherited biallelic mutations in a base excision repair gene. The MUTYH glycosylase plays an important role in preventing mutations associated with 8-oxoguanine (OG) by removing adenine residues that have been misincorporated opposite OG. MAP-associated mutations are present throughout MUTYH, with a large number coding for missense variations.
View Article and Find Full Text PDFEscherichia coli MutY has an important role in preventing mutations associated with the oxidative lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) in DNA by excising adenines from OG.A mismatches as the first step of base excision repair. To determine the importance of specific steps in the base pair recognition and base removal process of MutY, we have evaluated the effects of modifications of the OG.
View Article and Find Full Text PDFThe oxidation product of 2'-deoxyguanosine, 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG), produces G:C to T:A transversion mutations. The Escherichia coli base excision repair glycosylase MutY plays an important role in preventing OG-associated mutations by removing adenines misincorporated opposite OG lesions during DNA replication. Recently, biallelic mutations in the human MutY homologue (hMYH) have been correlated with the development of colorectal cancer.
View Article and Find Full Text PDFDNA charge transport (CT) chemistry provides a route to carry out oxidative DNA damage from a distance in a reaction that is sensitive to DNA mismatches and lesions. Here, DNA-mediated CT also leads to oxidation of a DNA-bound base excision repair enzyme, MutY. DNA-bound Ru(III), generated through a flash/quench technique, is found to promote oxidation of the [4Fe-4S](2+) cluster of MutY to [4Fe-4S](3+) and its decomposition product [3Fe-4S](1+).
View Article and Find Full Text PDFMutY, like many DNA base excision repair enzymes, contains a [4Fe4S]2+ cluster of undetermined function. Electrochemical studies of MutY bound to a DNA-modified gold electrode demonstrate that the [4Fe4S] cluster of MutY can be accessed in a DNA-mediated redox reaction. Although not detectable without DNA, the redox potential of DNA-bound MutY is approximately 275 mV versus NHE, which is characteristic of HiPiP iron proteins.
View Article and Find Full Text PDFThe oxidized guanine lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) is highly mutagenic, resulting in G:C to T:A transversion mutations in the absence of repair. The Escherichia coli adenine glycosylase MutY and its human homolog (hMYH) play an important role in the prevention of mutations associated with OG by removing misincorporated adenine residues from OG:A mismatches. Previously, biallelic mutations of hMYH have been identified in a British family (Family N) with symptoms characteristic of familial adenomatous polyposis (FAP), which is typically associated with mutations in the adenomatous polyposis coli (APC) gene.
View Article and Find Full Text PDFInherited defects of base excision repair have not been associated with any human genetic disorder, although mutations of the genes mutM and mutY, which function in Escherichia coli base excision repair, lead to increased transversions of G:C to T:A. We have studied family N, which is affected with multiple colorectal adenomas and carcinoma but lacks an inherited mutation of the adenomatous polyposis coli gene (APC) that is associated with familial adenomatous polyposis. Here we show that 11 tumors from 3 affected siblings contain 18 somatic inactivating mutations of APC and that 15 of these mutations are G:C-->A transversions--a significantly greater proportion than is found in sporadic tumors or in tumors associated with familial adenomatous polyposis.
View Article and Find Full Text PDF