Publications by authors named "Alison Kickuth"

Anaphase is tightly controlled spatiotemporally to ensure proper separation of chromosomes. The mitotic spindle, the self-organized microtubule structure driving chromosome segregation, scales in size with the available cytoplasm. Yet, the relationship between spindle size and chromosome movement remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Living systems, like embryos, can achieve precise shapes and structures even with inherent randomness in their development, a key topic in biology.
  • Researchers studied mouse, rabbit, and monkey embryos and found that, despite unpredictable cell divisions, 8-cell embryos naturally formed stable three-dimensional shapes.
  • The study revealed that changes in cell connectivity and physical factors help embryos maintain structure, and that random division timing can actually enhance the organization of cells rather than disrupt it.
View Article and Find Full Text PDF

For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data.

View Article and Find Full Text PDF

Anaphase is tightly controlled in space and time to ensure proper separation of chromosomes. The mitotic spindle, the self-organized microtubule structure driving chromosome segregation, scales in size with the available cytoplasm. Yet, the relationship between spindle size and chromosome movement remains poorly understood.

View Article and Find Full Text PDF

Early development across vertebrates and insects critically relies on robustly reorganizing the cytoplasm of fertilized eggs into individualized cells. This intricate process is orchestrated by large microtubule structures that traverse the embryo, partitioning the cytoplasm into physically distinct and stable compartments. Despite the robustness of embryonic development, here we uncover an intrinsic instability in cytoplasmic partitioning driven by the microtubule cytoskeleton.

View Article and Find Full Text PDF

For investigations into fate specification and cell rearrangements in live images of preimplantation embryos, automated and accurate 3D instance segmentation of nuclei is invaluable; however, the performance of segmentation methods is limited by the images' low signal-to-noise ratio and high voxel anisotropy and the nuclei's dense packing and variable shapes. Supervised machine learning approaches have the potential to radically improve segmentation accuracy but are hampered by a lack of fully annotated 3D data. In this work, we first establish a novel mouse line expressing near-infrared nuclear reporter H2B-miRFP720.

View Article and Find Full Text PDF

With over 18,000 species, the , or spiny-rayed fishes, form the largest and arguably most diverse radiation of vertebrates. One of the key novelties that contributed to their evolutionary success are the spiny rays in their fins that serve as a defense mechanism. We investigated the patterning mechanisms underlying the differentiation of median fin into discrete spiny and soft-rayed domains during the ontogeny of the direct-developing cichlid fish Distinct transcription factor signatures characterize these two fin domains, whereby mutually exclusive expression of with and marks the spine to soft-ray boundary.

View Article and Find Full Text PDF